public PredictorMLP(int aDimension, int aInputLength)
 {
     dimension = aDimension;
     inputLength = aInputLength;
     mlp = new MLPDll(new int[] { 30, dimension }, dimension * inputLength);
     r = new Random();
     mu = 0.0001;
     trainCount = 0;            
 }
 public GridNeuralController(IGridModelSimulator model, IObstaclePositionProvider obstacle, ICarPositionProvider start, IFinishPositionProvider finish)
 {
     this.model = model;
     
     
     //controller = new MLPDll(new int[] { 40, 1 }, 5, true);//4 bemenet a state, 1 kimenet az input                        
     controllerOriginal = new MLPDll(new int[] { 40, 1 }, 5, false);//4 bemenet a state, 1 kimenet az input                        
     
     obstacleProvider = obstacle;
     carStateProvider = start;
     finishStateProvider = finish;
     trainingStopped = true;
     mu = 0.005;
 }
 public NeuralController(IModelSimulator model, IObstaclePositionProvider obstacle, ICarPositionProvider start, IFinishPositionProvider finish)
 {
     this.model = model;
     if (INPUT_TYPE == inputType.wheelAngle)
     {
         controller = new MLPDll(new int[] { 20, 1 }, 4);//4 bemenet a state, 1 kimenet az input                        
     }
     else if (INPUT_TYPE == inputType.wheelSpeed)
     {
         controller = new MLPDll(new int[] { 75, 2 }, 4);//4 bemenet a state, 2 kimenet az input                        
     }
     obstacleProvider = obstacle;
     carStateProvider = start;
     finishStateProvider = finish;
     trainingStopped = true;
     mu = 0.005;
 }
        public static void SimulateOneStep(MLPDll controller, IModelSimulator model, CarModelState state, out CarModelInput outInput, out CarModelState outState)
        {
            double[] inputs = new double[4];            
            inputs[0] = ComMath.Normal(state.Position.X, CarModelState.MIN_POS_X, CarModelState.MAX_POS_X, POSITION_SCALE * MIN_NEURON_VALUE, POSITION_SCALE * MAX_NEURON_VALUE);
            inputs[1] = ComMath.Normal(state.Position.Y, CarModelState.MIN_POS_Y, CarModelState.MAX_POS_Y, POSITION_SCALE * MIN_NEURON_VALUE, POSITION_SCALE * MAX_NEURON_VALUE);
            inputs[2] = ComMath.Normal(state.Orientation.X, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            inputs[3] = ComMath.Normal(state.Orientation.Y, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            double[] controllerOutputs = controller.Output(inputs);            
                        
            if (INPUT_TYPE == inputType.wheelAngle)
            {                
                outInput = new CarModelInput();
                outInput.Angle = ComMath.Normal(controllerOutputs[0], MIN_NEURON_VALUE, MAX_NEURON_VALUE, CarModelInput.MIN_ANGLE, CarModelInput.MAX_ANGLE);
            }
            else if (INPUT_TYPE == inputType.wheelSpeed)
            {
                outInput = new CarModelInput(ComMath.Normal(controllerOutputs[0], MIN_NEURON_VALUE, MAX_NEURON_VALUE, CarModelInput.MIN_SPEED, CarModelInput.MAX_SPEED),
                                             ComMath.Normal(controllerOutputs[1], MIN_NEURON_VALUE, MAX_NEURON_VALUE, CarModelInput.MIN_SPEED, CarModelInput.MAX_SPEED));
                //********
                //hatrafele tilos mennie
                if (outInput.LeftSpeed < 0) outInput.LeftSpeed = 0;
                if (outInput.RightSpeed < 0) outInput.RightSpeed = 0;
                //********
            }

            model.SimulateModel(state, outInput, out outState);
        }
        private double TrainOneEpoch(double mu, out double SumSimCount, out List<CarModelState> innerStates)
        {

            int maxSimCount = 100;
            double sumSimCount = 0;
            double error = 0;            
            innerStates = new List<CarModelState>();
            List<double> deltaws = new List<double>();

            MLPDll[] controllers = new MLPDll[maxSimCount];
            IModelSimulator[] models = new IModelSimulator[maxSimCount];

            CarModelState state = carStateProvider.GetCarState();
            CarModelInput input = new CarModelInput();


            //kimenet kiszamitasa                    
            int simCount = 0;
            List<double[]> singleErrors = new List<double[]>();
            List<double[]> regularizationErrors = new List<double[]>();                
            CarModelState laststate;
            bool earlyStop;
            do
            {
                controllers[simCount] = new MLPDll(controller);//lemasoljuk
                models[simCount] = model.Clone();//a modellt is

                laststate = state;
                NeuralController.SimulateOneStep(controllers[simCount], models[simCount], state, out input, out state);//vegigszimulaljuk a simCount darab controlleren es modellen
                innerStates.Add(state);

                //kozbulso hibak kiszamitasa, itt csak az akadalyoktol valo tavolsag "hibajat" vesszuk figyelembe, irany nem szamit -> hibaja 0                    
                regularizationErrors.Add(obstacleFieldErrorGradient(state, simCount));
               
                //minden pont celtol vett tavolsaga
                double[] desiredOutput = (double[])finishStateProvider.GetFinishState(simCount);
                singleErrors.Add(new double[] {  1*ComMath.Normal(desiredOutput[0] - state.Position.X,CarModelState.MIN_POS_X, CarModelState.MAX_POS_X, MIN_NEURON_VALUE, MAX_NEURON_VALUE),
                                                 1*ComMath.Normal(desiredOutput[1] - state.Position.Y,CarModelState.MIN_POS_Y, CarModelState.MAX_POS_Y, MIN_NEURON_VALUE, MAX_NEURON_VALUE), 
                                                 0.1*ComMath.Normal(desiredOutput[2] - state.Orientation.X,CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE), 
                                                 0.1*ComMath.Normal(desiredOutput[3] - state.Orientation.Y,CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE) }
                                );
                
                ++simCount;

                earlyStop = false;
                if (simCount > 3)
                {
                    double[] err1 = singleErrors[simCount-1];
                    double[] err2 = singleErrors[simCount-2];
                    double[] err3 = singleErrors[simCount-3];
                    double error1, error2, error3;
                    error1 = error2 = error3 = 0;
                    for (int i = 0; i < err1.Length; i++)
	                {
                        error1 += err1[i] * err1[i];
                        error2 += err2[i] * err2[i];
                        error3 += err3[i] * err3[i];
	                }
                    earlyStop = ((error1 > error2) && (error3 > error2));

                    if (earlyStop)
                    {
                        //utolso elemet toroljuk
                        singleErrors.RemoveAt(singleErrors.Count - 1);
                        regularizationErrors.RemoveAt(regularizationErrors.Count - 1);
                        innerStates.RemoveAt(innerStates.Count - 1);
                        --simCount;
                    }                        
                }
                


            }
            while ((simCount < maxSimCount) && !earlyStop);
           

            
            double[] errors = singleErrors[singleErrors.Count-1];               
            
            sumSimCount += simCount;

            //hibavisszaterjesztes
            for (int i = simCount - 1; i >= 0; --i)
            {
                double[] sensitibility;
                models[i].CalcErrorSensibility(errors, out sensitibility);

                double[] inputSensitibility;

                if (INPUT_TYPE == inputType.wheelAngle)
                {
                    inputSensitibility = new double[1];
                    inputSensitibility[0] = sensitibility[6];
                }
                else if (INPUT_TYPE == inputType.wheelSpeed)
                {
                    inputSensitibility = new double[2];
                    inputSensitibility[0] = sensitibility[4];
                    inputSensitibility[1] = sensitibility[5];
                }

                double[] sensitibility2;

                controllers[i].SetOutputError(inputSensitibility);
                controllers[i].Backpropagate();
                controllers[i].CalculateDeltaWeights();
                sensitibility2 = controllers[i].SensitibilityD();
                

                
                errors[0] = (sensitibility[0] + sensitibility2[0]);
                errors[1] = (sensitibility[1] + sensitibility2[1]);
                errors[2] = (sensitibility[2] + sensitibility2[2]);
                errors[3] = (sensitibility[3] + sensitibility2[3]);
               
                //regularizaciobol szarmazo hiba hozzaadasa                    
                errors[0] += regularizationErrors[i][0];
                errors[1] += regularizationErrors[i][1];                


               
            }

            controller.ClearDeltaWeights();
            //sulymodositasok osszegzese     
            for (int i2 = 0; i2 < simCount; ++i2)
            {
                controller.AddDeltaWeights(controllers[i2]);                
            }
            float maxdw = controller.MaxDeltaWeight();
            //if (maxdw < 50) maxdw = 50;

            controller.ChangeWeights(mu / maxdw);

            ////sulymodositasok osszegzese                    
            //for (int i2 = 0; i2 < simCount; ++i2) //simCount
            //{

            //    int count = 0;
            //    for (int i = 1; i < controllers[i2]; ++i)
            //    {
            //        foreach (INeuron n in controllers[i2].mlp[i])
            //        {
            //            foreach (NeuronInput ni in ((Neuron)n).inputs)
            //            {
            //                if (deltaws.Count <= count) deltaws.Add(ni.deltaw);
            //                else deltaws[count] += ni.deltaw;
            //                ++count;
            //            }
            //        }
            //    }
            //}
                
            ////legnagyobb sulymodositas ertekenek meghatarozasa, majd ezzel normalas
            //double maxdw = 1;

            //foreach (double dw in deltaws)
            //{
            //    if (Math.Abs(dw) > maxdw) maxdw = Math.Abs(dw);
            //}

            //if (maxdw < 50) maxdw = 50;

            ////sulymodositasok ervenyre juttatasa a controllerben
            //int count2 = 0;
            
            //for (int i = 1; i < controller.mlp.Count; ++i)
            //{
            //    foreach (INeuron n in controller.mlp[i])
            //    {
            //        foreach (NeuronInput ni in ((Neuron)n).inputs)
            //        {
            //            ni.w += mu * deltaws[count2] / maxdw;
                         
            //            ++count2;
            //        }
            //    }
            //}

                      
            SumSimCount = sumSimCount;
            return error;
        }
 public NeuralModelSimulator()
 {
     mlp = new MLPDll(new int[] { 50, 4 }, 7);
 }
        public static void SimulateOneStep(MLPDll controller, IGridModelSimulator model, GridCarModelState state, out GridCarModelInput outInput, out GridCarModelState outState)
        {
            double[] inputs = new double[5];
            inputs[0] = ComMath.Normal(state.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, 0, MAX_NEURON_VALUE);
            inputs[1] = ComMath.Normal(state.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            inputs[2] = ComMath.Normal(state.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            inputs[3] = ComMath.Normal(state.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            inputs[4] = ComMath.Normal(state.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            double[] controllerOutputs = controller.Output(inputs);

            
            outInput = new GridCarModelInput();
            outInput.Angle = ComMath.Normal(controllerOutputs[0], MIN_NEURON_VALUE, MAX_NEURON_VALUE, GridCarModelInput.MIN_ANGLE, GridCarModelInput.MAX_ANGLE);
                       
            model.SimulateModel(state, outInput, out outState);
        }
Beispiel #8
0
 public void AddDeltaWeights(MLPDll src1)
 {
     AddDeltaWeights(src1.mlp, this.mlp, this.mlp);
 }
        private static double TrainOneEpoch(MLPDll controller, IGridModelSimulator model, ICarPositionProvider cps, IFinishPositionProvider fps, IObstaclePositionProvider ops, double mu, int maxSimCount, out double SumSimCount, out List<GridCarModelState> innerStates)
        {    
            double sumSimCount = 0;
            double error = 0;
            innerStates = new List<GridCarModelState>();
            List<double> deltaws = new List<double>();

            MLPDll[] controllers = new MLPDll[maxSimCount];
            IGridModelSimulator[] models = new IGridModelSimulator[maxSimCount];

            GridCarModelState state = GridCarModelState.FromCarModelState(cps.GetCarState());
            GridCarModelInput input = new GridCarModelInput();


            //kimenet kiszamitasa                    
            int simCount = 0;
            List<double[]> singleErrors = new List<double[]>();
            List<double[]> regularizationErrors = new List<double[]>();
            GridCarModelState laststate;
            bool earlyStop;
            do
            {
                if (simCount == 0) controllers[simCount] = new MLPDll(controller);//lemasoljuk
                else controllers[simCount] = new MLPDll(controllers[simCount - 1]);
                models[simCount] = model.Clone();//a modellt is

                laststate = state;
                GridNeuralController.SimulateOneStep(controllers[simCount], models[simCount], state, out input, out state);//vegigszimulaljuk a simCount darab controlleren es modellen
                innerStates.Add(state);

                //kozbulso hibak kiszamitasa, itt csak az akadalyoktol valo tavolsag "hibajat" vesszuk figyelembe, irany nem szamit -> hibaja 0                    
                regularizationErrors.Add(obstacleFieldErrorGradient(ops, state, simCount));

                //minden pont celtol vett tavolsaga                
                double disterror = ComMath.Normal(state.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, 0, 1);
                double orientationerror = disterror;
                if (orientationerror < 0.2) orientationerror = 0;
                double finishorientationerror = disterror;
                if (finishorientationerror > 0.05) finishorientationerror = 0;
                else finishorientationerror = 1;
                double finishX = Math.Cos(Math.PI - fps.GetFinishState(simCount).Angle);
                double finishY = Math.Sin(Math.PI - fps.GetFinishState(simCount).Angle);

                singleErrors.Add(new double[] { -disterror * MAX_NEURON_VALUE ,                                                                                                 
                                                orientationerror*ComMath.Normal(1 - state.TargetOrientation.X,GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE), 
                                                orientationerror*ComMath.Normal(0 - state.TargetOrientation.Y,GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE),
                                                finishorientationerror*ComMath.Normal(finishX - state.TargetFinishOrientation.X,GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE), 
                                                finishorientationerror*ComMath.Normal(finishY - state.TargetFinishOrientation.Y,GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE) }
                                );
                ++simCount;

                earlyStop = false;
                if (simCount > 3)
                {
                    double[] err1 = singleErrors[simCount - 1];
                    double[] err2 = singleErrors[simCount - 2];
                    double[] err3 = singleErrors[simCount - 3];
                    double error1, error2, error3;
                    error1 = error2 = error3 = 0;
                    for (int i = 0; i < 1; i++)//err1.Length
                    {
                        error1 += err1[i] * err1[i];
                        error2 += err2[i] * err2[i];
                        error3 += err3[i] * err3[i];
                    }
                    earlyStop = ((error1 > error2) && (error3 > error2));

                    if (earlyStop)
                    {
                        //utolso elemet toroljuk
                        singleErrors.RemoveAt(singleErrors.Count - 1);
                        regularizationErrors.RemoveAt(regularizationErrors.Count - 1);
                        innerStates.RemoveAt(innerStates.Count - 1);
                        --simCount;
                    }
                }



            }
            while ((simCount < maxSimCount) && !earlyStop);



            double[] errors = singleErrors[singleErrors.Count - 1];

            sumSimCount += simCount;

            //hibavisszaterjesztes
            for (int i = simCount - 1; i >= 0; --i)
            {
                double[] sensitibility;
                models[i].CalcErrorSensibility(errors, out sensitibility);

                double[] inputSensitibility;

                
                inputSensitibility = new double[1];
                inputSensitibility[0] = sensitibility[5];
                

                double[] sensitibility2;

                controllers[i].SetOutputError(inputSensitibility);
                controllers[i].Backpropagate();
                controllers[i].CalculateDeltaWeights();
                sensitibility2 = controllers[i].SensitibilityD();



                errors[0] = (sensitibility[0] + sensitibility2[0] + 0.1 * singleErrors[i][0]);
                errors[1] = (sensitibility[1] + sensitibility2[1] + 0 * singleErrors[i][1]);
                errors[2] = (sensitibility[2] + sensitibility2[2] + 0 * singleErrors[i][2]);
                errors[3] = (sensitibility[3] + sensitibility2[3] + singleErrors[i][3]);
                errors[4] = (sensitibility[4] + sensitibility2[4] + singleErrors[i][4]);

                //regularizaciobol szarmazo hiba hozzaadasa                    
                errors[0] += regularizationErrors[i][0];
                errors[1] += regularizationErrors[i][1];
                errors[2] += regularizationErrors[i][2];



            }

            controller.ClearDeltaWeights();
            //sulymodositasok osszegzese     
            for (int i2 = 0; i2 < simCount; ++i2)
            {
                controller.AddDeltaWeights(controllers[i2]);
            }
            float maxdw = controller.MaxDeltaWeight();
            //if (maxdw < 50) maxdw = 50;

            controller.ChangeWeights(mu / maxdw);

            ////sulymodositasok osszegzese                    
            //for (int i2 = 0; i2 < simCount; ++i2) //simCount
            //{

            //    int count = 0;
            //    for (int i = 1; i < controllers[i2]; ++i)
            //    {
            //        foreach (INeuron n in controllers[i2].mlp[i])
            //        {
            //            foreach (NeuronInput ni in ((Neuron)n).inputs)
            //            {
            //                if (deltaws.Count <= count) deltaws.Add(ni.deltaw);
            //                else deltaws[count] += ni.deltaw;
            //                ++count;
            //            }
            //        }
            //    }
            //}

            ////legnagyobb sulymodositas ertekenek meghatarozasa, majd ezzel normalas
            //double maxdw = 1;

            //foreach (double dw in deltaws)
            //{
            //    if (Math.Abs(dw) > maxdw) maxdw = Math.Abs(dw);
            //}

            //if (maxdw < 50) maxdw = 50;

            ////sulymodositasok ervenyre juttatasa a controllerben
            //int count2 = 0;

            //for (int i = 1; i < controller.mlp.Count; ++i)
            //{
            //    foreach (INeuron n in controller.mlp[i])
            //    {
            //        foreach (NeuronInput ni in ((Neuron)n).inputs)
            //        {
            //            ni.w += mu * deltaws[count2] / maxdw;

            //            ++count2;
            //        }
            //    }
            //}


            SumSimCount = sumSimCount;
            return error;
        }
Beispiel #10
0
 public MLPDll(MLPDll copy, bool isWeakening)
 {
     mlp = copyMLPandChangeWeakening(copy.mlp, isWeakening);
 }
Beispiel #11
0
 public MLPDll(MLPDll copy)
 {
     mlp = copyMLP(copy.mlp);
 }
Beispiel #12
0
 public void AddDeltaWeights(MLPDll src1)
 {
     AddDeltaWeights(src1.mlp, this.mlp, this.mlp);
 }
Beispiel #13
0
 public MLPDll(MLPDll copy, bool isWeakening)
 {
     mlp = copyMLPandChangeWeakening(copy.mlp, isWeakening);            
 }
Beispiel #14
0
 public MLPDll(MLPDll copy)
 {
     mlp = copyMLP(copy.mlp);
 }