Beispiel #1
0
 private static void MutateNeuronBiasRandomize(Ann ann)
 {
     ann.GetAllNeurons()[Util.rand.Next(ann.GetAllNeurons().Count)].Bias = Util.rand.NextDouble();
 }
Beispiel #2
0
        public Ann Train(int maxGenerations, int generationSize, double?errorThreshold, int mutationRate, int mutationRolls, bool waitForFlag, double[][] inputs, double[][] expectedOutputs, Crossover.CrossoverOperation crossoverOperation, ActivationFunction.ActivationMethod activationMethod)
        {
            Ann[] generation  = new Ann[generationSize];
            int   inputCount  = inputs[0].Length;
            int   outputCount = expectedOutputs[0].Length;

            for (int generationId = 0; generationId < maxGenerations; generationId++)
            {
                if (generationId == 0)
                {
                    for (int startingIndividual = 0; startingIndividual < generationSize; startingIndividual++)
                    {
                        Ann    ann   = new Ann(inputCount, outputCount, activationMethod);
                        double error = CalculateError(ann, inputs, expectedOutputs);
                        ann.Error = error;
                        generation[startingIndividual] = ann;
                    }
                }
                else
                {
                    Ann parentA = generation[0];
                    Ann parentB = generation[1];

                    for (int newIndividual = 0; newIndividual < generationSize; newIndividual++)
                    {
                        generation = generation.OrderByDescending(x => x.Error).ToArray();

                        Ann child = crossoverOperation.Invoke(parentA, parentB);
                        Mutations.RollToCauseRandomMutation(child, mutationRate, mutationRolls);
                        double error = CalculateError(child, inputs, expectedOutputs);
                        child.Error = error;

                        if (child.Error < generation[0].Error)
                        {
                            generation[0] = child;
                        }
                    }
                }

                generation.ToList().ForEach(x =>
                {
                    x.Error      = CalculateError(x, inputs, expectedOutputs);
                    x.Generation = generationId;
                });

                generation = generation.OrderBy(x => x.Error).ToArray();

                if (waitForFlag)
                {
                    waitFlag = true;
                    OnGenerationEnd?.Invoke(generation[0]);
                    while (waitFlag)
                    {
                    }
                }
                else
                {
                    OnGenerationEnd?.Invoke(generation[0]);
                }

                if (errorThreshold != null && generation[0].Error < errorThreshold)
                {
                    return(generation[0]);
                }
            }
            return(generation[0]);
        }