Beispiel #1
0
        static List <string> slipt(string n)
        {
            NLP nlp = new NLP();

            char[]        delimate = new char[] { '\'', ':', ',', '.', '(', ')', '/', '\"', '!', '*', ';', '[', ']', '{', '}' };
            List <string> temp     = new List <string>();

            /*sentence detect*/
            string[] sentences = nlp.SentDetect(n);
            foreach (string s in sentences)
            {
                /*tokenization*/
                string[] tokens2 = nlp.Tokenize(s);
                /*Stemming, Lemmatization*/
                for (int i = 0; i < tokens2.Length; i++)
                {
                    tokens2[i] = nlp.Lemmatization(tokens2[i]);
                }
                /*Filter out stopwords*/
                string[] result2 = nlp.FilterOutStopWords(tokens2);
                foreach (string sf in result2)
                {
                    string[] te = sf.Split(delimate);
                    foreach (string t in te)
                    {
                        if (t != "")
                        {
                            temp.Add(t);
                        }
                    }
                }
            }
            return(temp);

            /*Paser
             *  Parse p = nlp.Parser(sent);
             *  p.show();*/
            //Console.ReadKey();
        }
Beispiel #2
0
        static void Main(string[] args)
        {
            string       r_path = "./input_hotel_review.txt";
            string       w_path = "./output.txt";
            StreamWriter sw     = new StreamWriter(w_path);
            StreamReader sr     = new StreamReader(r_path);

            NLP nlp = new NLP();

            while (!sr.EndOfStream)
            {
                int index = 0, count = 0;
                List <indexcoll> option_index = new List <indexcoll>();
                string           str          = sr.ReadLine();
                do
                {
                    index = str.IndexOf("<opinion>", index);
                    if (index != -1)
                    {
                        int       end_index = str.IndexOf("</opinion>", index);
                        indexcoll temp      = new indexcoll();
                        temp.start = index - (19 * count);
                        index     += 9;
                        temp.end   = end_index - index;
                        option_index.Add(temp);
                        count++;
                    }
                } while (index != -1);
                Console.WriteLine(str);

                index = count = 0;
                //chinese word segmentation
                string[] result = nlp.CWS(str);
                foreach (string s in result)
                {
                    string[] tokens = s.Split(' ');

                    foreach (string t in tokens)
                    {
                        char[]   separators = { '(', ')' };
                        string[] temp       = t.Split(separators);
                        for (int i = 0, flag = 0; i < temp[0].Length; i++, count++)
                        {
                            //[char][\t][POS][\t][斷詞後的長度][\t][斷詞的B,I][\t][Ans]
                            sw.Write(temp[0][i] + "\t" + temp[1] + "\t" + temp[0].Length + "\t");
                            if (i == 0)
                            {
                                sw.Write("B\t");
                                if (index < option_index.Count() && option_index[index].start.Equals(count))
                                {
                                    sw.Write("B-OPINION\t");
                                    flag = 1;
                                }
                                else
                                {
                                    sw.Write("0\t");
                                    if (flag == 1)
                                    {
                                        flag = 0;
                                        index++;
                                    }
                                }
                            }
                            else
                            {
                                sw.Write("I\t");
                                if (flag == 1 && (option_index[index].start + option_index[index].end) > count)
                                {
                                    sw.Write("I-OPINION\t");
                                }
                                else
                                {
                                    sw.Write("0\t");
                                }
                            }
                            sw.WriteLine();
                        }
                    }
                }
                sw.WriteLine();
            }
        }
Beispiel #3
0
        public void Nlp(string folderName)
        {
            NLP          nlp  = new NLP();
            StreamReader srP  = new StreamReader(@"C:\Users\Ian Hsieh\Downloads\Project Testsite\SenticDic\positive-words.txt");
            StreamReader srN  = new StreamReader(@"C:\Users\Ian Hsieh\Downloads\Project Testsite\SenticDic\negative-words.txt");
            StreamReader srGA = new StreamReader(@"C:\Users\Ian Hsieh\Downloads\Project Testsite\Gold_answer_test.txt");
            StreamReader srSN = new StreamReader(@"C:\Users\Ian Hsieh\Downloads\Project Testsite\Songnames_test.txt");

            string[] pw = new string[2048];
            string[] nw = new string[5000];
            Dictionary <string, string> answer = new Dictionary <string, string>();
            int    i = 0;
            string line, line1;

            while ((line = srP.ReadLine()) != null)
            {
                pw[i++] = nlp.Lemmatization(nlp.Stem(line));
            }
            i = 0;
            while ((line = srN.ReadLine()) != null)
            {
                nw[i++] = nlp.Lemmatization(nlp.Stem(line));
            }
            i = 0;
            while ((line = srGA.ReadLine()) != null && (line1 = srSN.ReadLine()) != null)
            {
                //if (line == "1" || line == "4")
                //answer.Add(line1.Replace('?', ' ').Replace(':', ' '), "1");
                //else if (line == "3" || line == "2")
                answer.Add(line1.Replace('?', ' ').Replace(':', ' '), line);
            }
            srP.Close();
            srN.Close();
            srGA.Close();
            srSN.Close();

            StreamWriter             sw = new StreamWriter(@"C:\Users\Ian Hsieh\Downloads\Project Testsite\MIR_TF_test.txt");
            int                      number = 1, tv, no;
            Dictionary <string, int> dict = new Dictionary <string, int>();
            Dictionary <string, int> dic = new Dictionary <string, int>();
            List <string>            avg = new List <string>();

            foreach (string fileName in System.IO.Directory.GetFiles(folderName))
            {
                System.IO.StreamReader file = new System.IO.StreamReader(fileName);
                while ((line = file.ReadLine()) != null)
                {
                    string[] sents = nlp.SentDetect(line.Trim());
                    string[] tokens, tokens_reviews;
                    foreach (string sent in sents)
                    {
                        if (sent.Contains('('))
                        {
                            sent.Replace('(', ' ');
                        }
                        if (sent.Contains(')'))
                        {
                            sent.Replace(')', ' ');
                        }
                        if (sent.Contains('!'))
                        {
                            sent.Replace('!', ' ');
                        }
                        if (sent.Contains('#'))
                        {
                            sent.Replace('#', ' ');
                        }
                        if (sent.Contains('&'))
                        {
                            sent.Replace('&', ' ');
                        }
                        if (sent.Contains('*'))
                        {
                            sent.Replace('*', ' ');
                        }
                        if (sent.Contains(','))
                        {
                            sent.Replace(',', ' ');
                        }
                        if (sent.Contains('.'))
                        {
                            sent.Replace('.', ' ');
                        }
                        if (sent.Contains(':'))
                        {
                            sent.Replace(':', ' ');
                        }
                        if (sent.Contains(';'))
                        {
                            sent.Replace(';', ' ');
                        }
                        if (sent.Contains('?'))
                        {
                            sent.Replace('?', ' ');
                        }
                        if (sent.Contains('"'))
                        {
                            sent.Replace('"', ' ');
                        }
                        if (sent.Contains('\\'))
                        {
                            sent.Replace('\\', ' ');
                        }
                        if (sent.Contains('/'))
                        {
                            sent.Replace('/', ' ');
                        }
                        if (sent.Contains('-'))
                        {
                            sent.Replace('-', ' ');
                        }
                        if (sent == " ")
                        {
                            continue;
                        }
                        tokens         = nlp.Tokenize(sent);//tokenize sentences
                        tokens_reviews = nlp.Lemmatization(nlp.Stem(nlp.FilterOutStopWords(tokens)));
                        foreach (string token in tokens_reviews)
                        {
                            if (dict.ContainsKey(token))
                            {
                                dict[token]++;
                            }
                            else
                            {
                                dict.Add(token, 1);
                            }
                            if (dic.ContainsKey(token))
                            {
                                continue;
                            }
                            else
                            {
                                dic.Add(token, number++);
                            }
                        }
                    }
                }

                /*if(System.IO.Directory.GetFiles(folderName).Last() == fname)
                 *  file.Close();*/
                sw.Write("+" + answer[fileName.Substring(fileName.IndexOf('_') + 1, (fileName.IndexOf(".txt") - fileName.IndexOf('_') - 1))] + " ");
                tv = 0;
                no = 0;
                foreach (KeyValuePair <string, int> item in dict)
                {
                    int value = 1;//0;

                    /*foreach (string word in pw)
                     * {
                     *  if (word == item.Key)
                     *  {
                     *      value = 1;
                     *      break;
                     *  }
                     * }
                     * foreach(string word in nw)
                     * {
                     *  if (word == item.Key)
                     *  {
                     *      value = -1;
                     *      break;
                     *  }
                     * }
                     * if (value == 0 && !avg.Contains(item.Key))
                     * {
                     *  avg.Add(item.Key);
                     *  continue;
                     * }*/
                    Console.WriteLine(dic[item.Key] + ":" + (item.Value * value) + "\n");
                    sw.Write(dic[item.Key] + ":" + (item.Value * value) + " ");
                    tv += item.Value * value;
                    no += item.Value;
                }

                /*foreach (string str in avg)
                 * {
                 *  Console.WriteLine(dic[str] + ":" + ((double)dict[str] * (double)tv / (double)no) + "\n");
                 *  sw.Write(dic[str] + ":" + ((double)dict[str] * (double)tv / (double)no) + " ");
                 * }*/
                sw.WriteLine();
                dict.Clear();
                avg.Clear();
            }
            sw.Close();
        }
Beispiel #4
0
        static void Main(string[] args)
        {
            NLP         nlp = new NLP();
            XmlDocument doc = new XmlDocument();

            doc.Load("training.xml");

            XmlNodeList nodes             = doc.SelectNodes("RDF/Text");
            Dictionary <string, int> dict = new Dictionary <string, int>();

            char[]       separator = { ' ', ',', '.', '?', '!' };
            int          tokno     = 1;
            StreamWriter sw        = new StreamWriter("./Task1op.txt");

            foreach (XmlNode n in nodes)
            {
                string   text  = n.InnerText;
                string[] sents = nlp.SentDetect(text);
                string   p     = n.Attributes["category"].Value;
                int      polar = 0;
                if (p == "book")
                {
                    polar = 1;
                }
                else if (p == "dvd")
                {
                    polar = 2;
                }
                else if (p == "health")
                {
                    polar = 3;
                }
                else if (p == "music")
                {
                    polar = 4;
                }
                else if (p == "toys_games")
                {
                    polar = 5;
                }
                sw.Write("+" + polar.ToString() + " ");
                sw.Flush();
                foreach (string sent in sents)
                {
                    string   s     = sent.ToLower();
                    string[] token = nlp.Tokenize(s);
                    foreach (string t in token)
                    {
                        string lemma = nlp.Lemmatization(t);
                        if (nlp.IsStopWord(lemma))
                        {
                            continue;
                        }
                        else
                        {
                            if (!dict.ContainsKey(lemma))
                            {
                                dict.Add(lemma, tokno);
                                tokno++;
                            }
                            sw.Write(dict[lemma] + ":1 ");
                            sw.Flush();
                        }
                    }
                }
                sw.WriteLine("");
                sw.Flush();
            }
            Console.WriteLine("Finished.");
            Console.ReadKey();
        }