Beispiel #1
0
        static void TrainTestFm()
        {
            var reader = new PlayingSessionReader(path);
            var container = new MusicDataContainer();

            reader.LoadData(container);

            var splitter = new RatingSimpleSplitter(container, 0.25f);
            //var itemRecommender = new MostPopular();
            //var model = new MediaLitePosFeedbakItemRecommender(itemRecommender);
            var fm = new LibFmTrainTester();

            var context = new EvalutationContext<ItemRating>(fm, splitter);

            var pipline = new EvaluationPipeline<ItemRating>(context);
            pipline.Evaluators.Add(new RMSE());
            pipline.Evaluators.Add(new MAE());

            pipline.Run();
        }
Beispiel #2
0
        static void TrainTestFm()
        {
            var reader    = new PlayingSessionReader(path);
            var container = new MusicDataContainer();

            reader.LoadData(container);

            var splitter = new RatingSimpleSplitter(container, 0.25f);
            //var itemRecommender = new MostPopular();
            //var model = new MediaLitePosFeedbakItemRecommender(itemRecommender);
            var fm = new LibFmTrainTester();

            var context = new EvalutationContext <ItemRating>(fm, splitter);

            var pipline = new EvaluationPipeline <ItemRating>(context);

            pipline.Evaluators.Add(new RMSE());
            pipline.Evaluators.Add(new MAE());

            pipline.Run();
        }
Beispiel #3
0
        static void TrainTest()
        {
            var reader    = new PlayingSessionReader(path);
            var container = new MusicDataContainer();

            reader.LoadData(container);

            var splitter = new PositiveFeedbackSimpleSplitter(container, 0.3f);
            //var itemRecommender = new MostPopular();
            //var model = new MediaLitePosFeedbakItemRecommender(itemRecommender);
            var fm = new PosFeedbackLibFmTrainTester();

            var context = new EvalutationContext <PositiveFeedback>(fm, splitter);

            //var pipline = new EvaluationPipeline<PositiveFeedback>(context);
            //pipline.Evaluators.Add(new MediaLitePositiveFeedbackEvaluators(itemRecommender));

            //pipline.Run();

            context.RunDefaultTrainAndTest();
        }
Beispiel #4
0
        static void TrainTest()
        {
            var reader = new PlayingSessionReader(path);
            var container = new MusicDataContainer();

            reader.LoadData(container);

            var splitter = new PositiveFeedbackSimpleSplitter(container, 0.3f);
            //var itemRecommender = new MostPopular();
            //var model = new MediaLitePosFeedbakItemRecommender(itemRecommender);
            var fm = new PosFeedbackLibFmTrainTester();

            var context = new EvalutationContext<PositiveFeedback>(fm, splitter);

            //var pipline = new EvaluationPipeline<PositiveFeedback>(context);
            //pipline.Evaluators.Add(new MediaLitePositiveFeedbackEvaluators(itemRecommender));

            //pipline.Run();

            context.RunDefaultTrainAndTest();
        }