bitCount() public method

public bitCount ( ) : int
return int
		// initializes the private variables (throws CryptographicException)
		private void Initialize(BigInteger p, BigInteger g, BigInteger x, int secretLen, bool checkInput) {
			if (!p.isProbablePrime() || g <= 0 || g >= p || (x != null && (x <= 0 || x > p - 2)))
				throw new CryptographicException();
			// default is to generate a number as large as the prime this
			// is usually overkill, but it's the most secure thing we can
			// do if the user doesn't specify a desired secret length ...
			if (secretLen == 0)
				secretLen = p.bitCount();
			m_P = p;
			m_G = g;
			if (x == null) {
				BigInteger pm1 = m_P - 1;
				for(m_X = BigInteger.genRandom(secretLen); m_X >= pm1 || m_X == 0; m_X = BigInteger.genRandom(secretLen)) {}
			} else {
				m_X = x;
			}
		}
Beispiel #2
0
            public BigInteger EvenPow(BigInteger b, BigInteger exp)
            {
                BigInteger resultNum = new BigInteger((BigInteger)1, mod.length << 1);
                BigInteger tempNum = new BigInteger(b % mod, mod.length << 1);  // ensures (tempNum * tempNum) < b^ (2k)

                uint totalBits = (uint)exp.bitCount();

                uint[] wkspace = new uint[mod.length << 1];

                // perform squaring and multiply exponentiation
                for (uint pos = 0; pos < totalBits; pos++)
                {
                    if (exp.testBit(pos))
                    {

                        Array.Clear(wkspace, 0, wkspace.Length);
                        Kernel.Multiply(resultNum.data, 0, resultNum.length, tempNum.data, 0, tempNum.length, wkspace, 0);
                        resultNum.length += tempNum.length;
                        uint[] t = wkspace;
                        wkspace = resultNum.data;
                        resultNum.data = t;

                        BarrettReduction(resultNum);
                    }

                    Kernel.SquarePositive(tempNum, ref wkspace);
                    BarrettReduction(tempNum);

                    if (tempNum == 1)
                    {
                        return resultNum;
                    }
                }

                return resultNum;
            }
Beispiel #3
0
            private unsafe BigInteger OddModTwoPow(BigInteger exp)
            {

                uint[] wkspace = new uint[mod.length << 1 + 1];

                BigInteger resultNum = Montgomery.ToMont((BigInteger)2, this.mod);
                resultNum = new BigInteger(resultNum, mod.length << 1 + 1);

                uint mPrime = Montgomery.Inverse(mod.data[0]);

                //
                // TODO: eat small bits, the ones we can do with no modular reduction
                //
                uint pos = (uint)exp.bitCount() - 2;

                do
                {
                    Kernel.SquarePositive(resultNum, ref wkspace);
                    resultNum = Montgomery.Reduce(resultNum, mod, mPrime);

                    if (exp.testBit(pos))
                    {
                        //
                        // resultNum = (resultNum * 2) % mod
                        //

                        fixed (uint* u = resultNum.data)
                        {
                            //
                            // Double
                            //
                            uint* uu = u;
                            uint* uuE = u + resultNum.length;
                            uint x, carry = 0;
                            while (uu < uuE)
                            {
                                x = *uu;
                                *uu = (x << 1) | carry;
                                carry = x >> (32 - 1);
                                uu++;
                            }

                            // subtraction inlined because we know it is square
                            if (carry != 0 || resultNum >= mod)
                            {
                                fixed (uint* s = mod.data)
                                {
                                    uu = u;
                                    uint c = 0;
                                    uint* ss = s;
                                    do
                                    {
                                        uint a = *ss++;
                                        if (((a += c) < c) | ((*(uu++) -= a) > ~a))
                                            c = 1;
                                        else
                                            c = 0;
                                    } while (uu < uuE);
                                }
                            }
                        }
                    }
                } while (pos-- > 0);

                resultNum = Montgomery.Reduce(resultNum, mod, mPrime);
                return resultNum;
            }
Beispiel #4
0
            private unsafe BigInteger EvenPow(uint b, BigInteger exp)
            {
                exp.Normalize();
                uint[] wkspace = new uint[mod.length << 1 + 1];
                BigInteger resultNum = new BigInteger((BigInteger)b, mod.length << 1 + 1);

                uint pos = (uint)exp.bitCount() - 2;

                //
                // We know that the first itr will make the val b
                //

                do
                {
                    //
                    // r = r ^ 2 % m
                    //
                    Kernel.SquarePositive(resultNum, ref wkspace);
                    if (!(resultNum.length < mod.length))
                        BarrettReduction(resultNum);

                    if (exp.testBit(pos))
                    {

                        //
                        // r = r * b % m
                        //

                        // TODO: Is Unsafe really speeding things up?
                        fixed (uint* u = resultNum.data)
                        {

                            uint i = 0;
                            ulong mc = 0;

                            do
                            {
                                mc += (ulong)u[i] * (ulong)b;
                                u[i] = (uint)mc;
                                mc >>= 32;
                            } while (++i < resultNum.length);

                            if (resultNum.length < mod.length)
                            {
                                if (mc != 0)
                                {
                                    u[i] = (uint)mc;
                                    resultNum.length++;
                                    while (resultNum >= mod)
                                        Kernel.MinusEq(resultNum, mod);
                                }
                            }
                            else if (mc != 0)
                            {

                                //
                                // First, we estimate the quotient by dividing
                                // the first part of each of the numbers. Then
                                // we correct this, if necessary, with a subtraction.
                                //

                                uint cc = (uint)mc;

                                // We would rather have this estimate overshoot,
                                // so we add one to the divisor
                                uint divEstimate = (uint)((((ulong)cc << 32) | (ulong)u[i - 1]) /
                                    (mod.data[mod.length - 1] + 1));

                                uint t;

                                i = 0;
                                mc = 0;
                                do
                                {
                                    mc += (ulong)mod.data[i] * (ulong)divEstimate;
                                    t = u[i];
                                    u[i] -= (uint)mc;
                                    mc >>= 32;
                                    if (u[i] > t) mc++;
                                    i++;
                                } while (i < resultNum.length);
                                cc -= (uint)mc;

                                if (cc != 0)
                                {

                                    uint sc = 0, j = 0;
                                    uint[] s = mod.data;
                                    do
                                    {
                                        uint a = s[j];
                                        if (((a += sc) < sc) | ((u[j] -= a) > ~a)) sc = 1;
                                        else sc = 0;
                                        j++;
                                    } while (j < resultNum.length);
                                    cc -= sc;
                                }
                                while (resultNum >= mod)
                                    Kernel.MinusEq(resultNum, mod);
                            }
                            else
                            {
                                while (resultNum >= mod)
                                    Kernel.MinusEq(resultNum, mod);
                            }
                        }
                    }
                } while (pos-- > 0);

                return resultNum;
            }
Beispiel #5
0
            private BigInteger OddPow(BigInteger b, BigInteger exp)
            {
                BigInteger resultNum = new BigInteger(Montgomery.ToMont(1, mod), mod.length << 1);
                BigInteger tempNum = new BigInteger(Montgomery.ToMont(b, mod), mod.length << 1);  // ensures (tempNum * tempNum) < b^ (2k)
                uint mPrime = Montgomery.Inverse(mod.data[0]);
                uint totalBits = (uint)exp.bitCount();

                uint[] wkspace = new uint[mod.length << 1];

                // perform squaring and multiply exponentiation
                for (uint pos = 0; pos < totalBits; pos++)
                {
                    if (exp.testBit(pos))
                    {

                        Array.Clear(wkspace, 0, wkspace.Length);
                        Kernel.Multiply(resultNum.data, 0, resultNum.length, tempNum.data, 0, tempNum.length, wkspace, 0);
                        resultNum.length += tempNum.length;
                        uint[] t = wkspace;
                        wkspace = resultNum.data;
                        resultNum.data = t;

                        Montgomery.Reduce(resultNum, mod, mPrime);
                    }

                    Kernel.SquarePositive(tempNum, ref wkspace);
                    Montgomery.Reduce(tempNum, mod, mPrime);
                }

                Montgomery.Reduce(resultNum, mod, mPrime);
                return resultNum;
            }
        private void Initialize(BigInteger p, BigInteger g, BigInteger x)
        {
            if (!p.isProbablePrime() || g <= 0 || g >= p)
                throw new CryptographicException("Inputs p or g are not as expected. P probably isn't a prime or G is less than zero or more than P.");

            if(x != null) {
                _x = x;
            } else {
                var pMinus1 = p - 1;
                var secretLen = p.bitCount();
                for (_x = BigInteger.genRandom(secretLen); _x >= pMinus1 || _x == 0; _x = BigInteger.genRandom(secretLen)) { }
            }

            _p = p;
            _g = g;
        }