Beispiel #1
0
        /// <summary>
        /// VMP message to 'd'
        /// </summary>
        /// <param name="exp">Incoming message from 'exp'. Must be a proper distribution.  If uniform, the result will be uniform.</param>
        /// <param name="d">Incoming message from 'd'. Must be a proper distribution.  If uniform, the result will be uniform.</param>
        /// <param name="to_d">Previous outgoing message to 'd'.</param>
        /// <returns>The outgoing VMP message to the 'd' argument</returns>
        /// <remarks><para>
        /// The outgoing message is the factor viewed as a function of 'd' with 'exp' integrated out.
        /// The formula is <c>sum_exp p(exp) factor(exp,d)</c>.
        /// </para></remarks>
        /// <exception cref="ImproperMessageException"><paramref name="exp"/> is not a proper distribution</exception>
        /// <exception cref="ImproperMessageException"><paramref name="d"/> is not a proper distribution</exception>
        public static Gaussian DAverageLogarithm([Proper] Gamma exp, [Proper, Stochastic] Gaussian d, Gaussian to_d)
        {
            if (exp.IsPointMass)
            {
                return(ExpOp.DAverageLogarithm(exp.Point));
            }

            double m, v;

            d.GetMeanAndVariance(out m, out v);
            Gaussian msg = new Gaussian();
            double   mu, s2;
            var      prior = d / to_d;

            prior.GetMeanAndVariance(out mu, out s2);
            var z = Vector.Zero(2);

            z[0] = m;
            z[1] = Math.Log(v);
            double startingValue = GradientAndValueAtPoint(mu, s2, z, exp.Shape, exp.Rate, null);
            var    s             = new BFGS();
            int    evalCounter   = 0;

            s.MaximumStep         = 1e3;
            s.MaximumIterations   = 100;
            s.Epsilon             = 1e-5;
            s.convergenceCriteria = BFGS.ConvergenceCriteria.Objective;
            z = s.Run(z, 1.0, delegate(Vector y, ref Vector grad) { evalCounter++; return(GradientAndValueAtPoint(mu, s2, y, exp.Shape, exp.Rate, grad)); });
            m = z[0];
            v = Math.Exp(z[1]);
            to_d.SetMeanAndVariance(m, v);
            to_d.SetToRatio(to_d, prior);
            double endValue = GradientAndValueAtPoint(mu, s2, z, exp.Shape, exp.Rate, null);

            //Console.WriteLine("Went from {0} to {1} in {2} steps, {3} evals", startingValue, endValue, s.IterationsPerformed, evalCounter);
            if (startingValue < endValue)
            {
                Console.WriteLine("Warning: BFGS resulted in an increased objective function");
            }
            return(to_d);

            /* ---------------- NEWTON ITERATION VERSION 1 -------------------
             * double meanTimesPrec, prec;
             * d.GetNatural(out meanTimesPrec, out prec);
             * Matrix K = new Matrix(2, 2);
             * K[0, 0]=1/prec; // d2K by dmu^2
             * K[1, 0]=K[0, 1]=-meanTimesPrec/(prec*prec);
             * K[1, 1]=meanTimesPrec*meanTimesPrec/Math.Pow(prec, 3)+1/(2*prec*prec);
             * double[,,] Kprime = new double[2, 2, 2];
             * Kprime[0, 0, 0]=0;
             * Kprime[0, 0, 1]=Kprime[0, 1, 0]=Kprime[1, 0, 0]=-1/(prec*prec);
             * Kprime[0, 1, 1]=Kprime[1, 1, 0]=Kprime[1, 0, 1]=2*meanTimesPrec/Math.Pow(prec, 3);
             * Kprime[1, 1, 1]=-3*meanTimesPrec*meanTimesPrec/Math.Pow(prec, 4)-1/Math.Pow(prec, 3);
             * Vector gradS = new Vector(2);
             * gradS[0]=(exp.Shape-1)/prec-exp.Rate/prec*Math.Exp((meanTimesPrec+.5)/prec);
             * gradS[1]=-(exp.Shape-1)*meanTimesPrec/(prec*prec)+exp.Rate*(meanTimesPrec+.5)/(prec*prec)*Math.Exp((meanTimesPrec+.5)/prec);
             * Matrix grad2S = new Matrix(2, 2);
             * grad2S[0, 0]=-exp.Rate/(prec*prec)*Math.Exp((meanTimesPrec+.5)/prec);
             * grad2S[0, 1]=grad2S[1, 0]=-(exp.Shape-1)/(prec*prec)+exp.Rate*(1/(prec*prec)+(meanTimesPrec+.5)/Math.Pow(prec, 3))*Math.Exp((meanTimesPrec+.5)/prec);
             * grad2S[1, 1]=2*(exp.Shape-1)*meanTimesPrec/Math.Pow(prec, 3)-exp.Rate*(meanTimesPrec+.5)/(prec*prec)*(2/prec+(meanTimesPrec+.5)/(prec*prec))*Math.Exp((meanTimesPrec+.5)/prec);
             * Vector phi = new Vector(new double[] { result.MeanTimesPrecision, result.Precision });
             * Vector gradKL = K*phi-gradS;
             * Matrix hessianKL = K - grad2S;
             * for (int i=0; i<2; i++)
             *                              for (int j=0; j<2; j++)
             *                                                              for (int k=0; k<2; k++)
             *                                                                                              hessianKL[i, j]+=Kprime[i, j, k]*phi[k];
             * double step = 1;
             * Vector direction = GammaFromShapeAndRate.twoByTwoInverse(hessianKL)*gradKL;
             * Vector newPhi = phi - step * direction;
             * result.SetNatural(newPhi[0], newPhi[1]);
             * return result;
             *
             * ---------------- NEWTON ITERATION VERSION 2 -------------------
             * double mean, variance;
             * d.GetMeanAndVariance(out mean, out variance);
             * Gaussian prior = d / result;
             * double mean1, variance1;
             * prior.GetMeanAndVariance(out mean1, out variance1);
             * Vector gradKL = new Vector(2);
             * gradKL[0]=-(exp.Shape-1)+exp.Rate*Math.Exp(mean+variance/2)+mean/variance1-mean1/variance1;
             * gradKL[1]=-1/(2*variance)+exp.Rate*Math.Exp(mean+variance/2)+1/(2*variance1);
             * Matrix hessianKL = new Matrix(2, 2);
             * hessianKL[0, 0]=exp.Rate*Math.Exp(mean+variance/2)+1/variance1;
             * hessianKL[0, 1]=hessianKL[1, 0]=.5*exp.Rate*Math.Exp(mean+variance/2);
             * hessianKL[1, 1]=1/(2*variance*variance)+exp.Rate*Math.Exp(mean+variance/2)/4;
             * result.GetMeanAndVariance(out mean, out variance);
             * if (double.IsInfinity(variance))
             *                              variance=1000;
             * Vector theta = new Vector(new double[] { mean, variance });
             * theta -= GammaFromShapeAndRate.twoByTwoInverse(hessianKL)*gradKL;
             * result.SetMeanAndVariance(theta[0], theta[1]);
             * return result;
             * ----------------------------------------------------------------- */
        }
Beispiel #2
0
        /// <summary>EP message to <c>log</c>.</summary>
        /// <param name="log">Incoming message from <c>log</c>. Must be a proper distribution. If uniform, the result will be uniform.</param>
        /// <param name="d">Incoming message from <c>d</c>. Must be a proper distribution. If uniform, the result will be uniform.</param>
        /// <param name="result">Modified to contain the outgoing message.</param>
        /// <returns>
        ///   <paramref name="result" />
        /// </returns>
        /// <remarks>
        ///   <para>The outgoing message is a distribution matching the moments of <c>log</c> as the random arguments are varied. The formula is <c>proj[p(log) sum_(d) p(d) factor(log,d)]/p(log)</c>.</para>
        /// </remarks>
        /// <exception cref="ImproperMessageException">
        ///   <paramref name="log" /> is not a proper distribution.</exception>
        /// <exception cref="ImproperMessageException">
        ///   <paramref name="d" /> is not a proper distribution.</exception>
        public static Gaussian LogAverageConditional([Proper] Gaussian log, [SkipIfUniform] Gamma d, Gaussian result)
        {
            var g = Gamma.FromShapeAndRate(d.Shape + 1, d.Rate);

            return(ExpOp.DAverageConditional(g, log, result));
        }
Beispiel #3
0
        /// <summary>Evidence message for EP.</summary>
        /// <param name="log">Incoming message from <c>log</c>.</param>
        /// <param name="d">Incoming message from <c>d</c>.</param>
        /// <param name="to_log">Outgoing message to <c>log</c>.</param>
        /// <returns>Logarithm of the factor's average value across the given argument distributions.</returns>
        /// <remarks>
        ///   <para>The formula for the result is <c>log(sum_(log,d) p(log,d) factor(log,d))</c>.</para>
        /// </remarks>
        public static double LogAverageFactor(Gaussian log, Gamma d, [Fresh] Gaussian to_log)
        {
            Gamma g = Gamma.FromShapeAndRate(d.Shape + 1, d.Rate);

            return(d.Shape / d.Rate * ExpOp.LogAverageFactor(g, log, to_log));
        }
Beispiel #4
0
        /// <summary>EP message to <c>d</c>.</summary>
        /// <param name="log">Incoming message from <c>log</c>. Must be a proper distribution. If uniform, the result will be uniform.</param>
        /// <param name="d">Incoming message from <c>d</c>.</param>
        /// <param name="to_log">Previous outgoing message to <c>log</c>.</param>
        /// <returns>The outgoing EP message to the <c>d</c> argument.</returns>
        /// <remarks>
        ///   <para>The outgoing message is a distribution matching the moments of <c>d</c> as the random arguments are varied. The formula is <c>proj[p(d) sum_(log) p(log) factor(log,d)]/p(d)</c>.</para>
        /// </remarks>
        /// <exception cref="ImproperMessageException">
        ///   <paramref name="log" /> is not a proper distribution.</exception>
        public static Gamma DAverageConditional([Proper] Gaussian log, Gamma d, Gaussian to_log)
        {
            var g = Gamma.FromShapeAndRate(d.Shape + 1, d.Rate);

            return(ExpOp.ExpAverageConditional(g, log, to_log));
        }