Beispiel #1
0
        static void DisplayHelp()
        {
            // Create a dummy command line parser so we can display command line
              // help in the usual format.
              EnumParameter mode = new EnumParameter(
              "mode",
              "Select mode of operation.",
              new string[] { "clas", "density", "regression", "ssclas" },
              new string[] { "Supervised 2D classfication", "2D density estimation", "1D to 1D regression", "Semi-supervised 2D classification" },
              null);

              StringParameter args = new StringParameter("args...", "Other mode-specific arguments");

              CommandLineParser parser = new CommandLineParser();
              parser.Command = "SW";
              parser.AddArgument(mode);
              parser.AddArgument(args);

              Console.WriteLine(
            @"Sherwood decision forest library demos.
            ");
              parser.PrintHelp();

              Console.WriteLine(
            @"
            To get more help on a particular mode of operation, omit the arguments, e.g.
            sw density
            ");
        }
Beispiel #2
0
        static void Main(string[] args)
        {
            if (args.Length == 0 || args[0] == "/?" || args[0].ToLower() == "help")
            {
                DisplayHelp();
                return;
            }

            // These command line parameters are reused over several command line modes...
            StringParameter       trainingDataPath = new StringParameter("path", "Path of file containing training data.");
            NaturalParameter      T             = new NaturalParameter("t", "No. of trees in the forest (default = {0}).", 10);
            NaturalParameter      D             = new NaturalParameter("d", "Maximum tree levels (default = {0}).", 10, 20);
            NaturalParameter      F             = new NaturalParameter("f", "No. of candidate feature responses per decision node (default = {0}).", 10);
            NaturalParameter      L             = new NaturalParameter("l", "No. of candidate thresholds per feature response (default = {0}).", 1);
            SingleParameter       a             = new SingleParameter("a", "The number of 'effective' prior observations (default = {0}).", true, false, 10.0f);
            SingleParameter       b             = new SingleParameter("b", "The variance of the effective observations (default = {0}).", true, true, 400.0f);
            SimpleSwitchParameter verboseSwitch = new SimpleSwitchParameter("Enables verbose progress indication.");
            SingleParameter       plotPaddingX  = new SingleParameter("padx", "Pad plot horizontally (default = {0}).", true, false, 0.1f);
            SingleParameter       plotPaddingY  = new SingleParameter("pady", "Pad plot vertically (default = {0}).", true, false, 0.1f);
            EnumParameter         split         = new EnumParameter(
                "s",
                "Specify what kind of split function to use (default = {0}).",
                new string[] { "axis", "linear" },
                new string[] { "axis-aligned split", "linear split" },
                "axis");

            // Behaviour depends on command line mode...
            string mode = args[0].ToLower(); // first argument defines the command line mode

            if (mode == "clas" || mode == "class")
            {
                #region Supervised classification
                CommandLineParser parser = new CommandLineParser();

                parser.Command = "SW " + mode.ToUpper();

                parser.AddArgument(trainingDataPath);
                parser.AddSwitch("T", T);
                parser.AddSwitch("D", D);
                parser.AddSwitch("F", F);
                parser.AddSwitch("L", L);
                parser.AddSwitch("SPLIT", split);

                parser.AddSwitch("PADX", plotPaddingX);
                parser.AddSwitch("PADY", plotPaddingY);
                parser.AddSwitch("VERBOSE", verboseSwitch);

                // Default values up above should be fine here.

                if (args.Length == 1)
                {
                    parser.PrintHelp();
                    DisplayTextFiles(CLAS_DATA_PATH);
                    return;
                }

                if (parser.Parse(args, 1) == false)
                {
                    return;
                }

                TrainingParameters trainingParameters = new TrainingParameters()
                {
                    MaxDecisionLevels                     = D.Value - 1,
                    NumberOfCandidateFeatures             = F.Value,
                    NumberOfCandidateThresholdsPerFeature = L.Value,
                    NumberOfTrees = T.Value,
                    Verbose       = verboseSwitch.Used
                };

                PointF plotDilation = new PointF(plotPaddingX.Value, plotPaddingY.Value);

                DataPointCollection trainingData = LoadTrainingData(
                    trainingDataPath.Value,
                    CLAS_DATA_PATH,
                    2,
                    DataDescriptor.HasClassLabels);

                if (split.Value == "linear")
                {
                    Forest <LinearFeatureResponse2d, HistogramAggregator> forest = ClassificationExample.Train(
                        trainingData,
                        new LinearFeatureFactory(),
                        trainingParameters);

                    using (Bitmap result = ClassificationExample.Visualize(forest, trainingData, new Size(300, 300), plotDilation))
                    {
                        ShowVisualizationImage(result);
                    }
                }
                else if (split.Value == "axis")
                {
                    Forest <AxisAlignedFeatureResponse, HistogramAggregator> forest = ClassificationExample.Train(
                        trainingData,
                        new AxisAlignedFeatureFactory(),
                        trainingParameters);

                    using (Bitmap result = ClassificationExample.Visualize(forest, trainingData, new Size(300, 300), plotDilation))
                    {
                        ShowVisualizationImage(result);
                    }
                }
                #endregion
            }
            else if (mode == "density")
            {
                #region Density Estimation
                CommandLineParser parser = new CommandLineParser();

                parser.Command = "SW " + mode.ToUpper();

                parser.AddArgument(trainingDataPath);
                parser.AddSwitch("T", T);
                parser.AddSwitch("D", D);
                parser.AddSwitch("F", F);
                parser.AddSwitch("L", L);

                // For density estimation (and semi-supervised learning) we add
                // a command line option to set the hyperparameters of the prior.
                parser.AddSwitch("a", a);
                parser.AddSwitch("b", b);

                parser.AddSwitch("PADX", plotPaddingX);
                parser.AddSwitch("PADY", plotPaddingY);
                parser.AddSwitch("VERBOSE", verboseSwitch);

                // Override default values for command line options.
                T.Value = 1;
                D.Value = 3;
                F.Value = 5;
                L.Value = 1;
                a.Value = 0;
                b.Value = 900;

                if (args.Length == 1)
                {
                    parser.PrintHelp();
                    DisplayTextFiles(DENSITY_DATA_PATH);
                    return;
                }

                if (parser.Parse(args, 1) == false)
                {
                    return;
                }

                TrainingParameters parameters = new TrainingParameters()
                {
                    MaxDecisionLevels                     = D.Value - 1,
                    NumberOfCandidateFeatures             = F.Value,
                    NumberOfCandidateThresholdsPerFeature = L.Value,
                    NumberOfTrees = T.Value,
                    Verbose       = verboseSwitch.Used
                };

                DataPointCollection trainingData = LoadTrainingData(
                    trainingDataPath.Value,
                    DENSITY_DATA_PATH,
                    2,
                    DataDescriptor.Unadorned);

                Forest <AxisAlignedFeatureResponse, GaussianAggregator2d> forest = DensityEstimationExample.Train(trainingData, parameters, a.Value, b.Value);

                PointF plotDilation = new PointF(plotPaddingX.Value, plotPaddingY.Value);

                using (Bitmap result = DensityEstimationExample.Visualize(forest, trainingData, new Size(300, 300), plotDilation))
                {
                    ShowVisualizationImage(result);
                }
                #endregion
            }
            else if (mode == "ssclas" || mode == "ssclas")
            {
                #region Semi-supervised classification

                CommandLineParser parser = new CommandLineParser();

                parser.Command = "SW " + mode.ToUpper();

                parser.AddArgument(trainingDataPath);
                parser.AddSwitch("T", T);
                parser.AddSwitch("D", D);
                parser.AddSwitch("F", F);
                parser.AddSwitch("L", L);

                parser.AddSwitch("split", split);

                parser.AddSwitch("a", a);
                parser.AddSwitch("b", b);

                EnumParameter plotMode = new EnumParameter(
                    "plot",
                    "Determines what to plot",
                    new string[] { "density", "labels" },
                    new string[] { "plot recovered density estimate", "plot class likelihood" },
                    "labels");
                parser.AddSwitch("plot", plotMode);

                parser.AddSwitch("PADX", plotPaddingX);
                parser.AddSwitch("PADY", plotPaddingY);

                parser.AddSwitch("VERBOSE", verboseSwitch);

                // Override default values for command line options.
                T.Value = 10;
                D.Value = 12 - 1;
                F.Value = 30;
                L.Value = 1;

                if (args.Length == 1)
                {
                    parser.PrintHelp();
                    DisplayTextFiles(SSCLAS_DATA_PATH);
                    return;
                }

                if (parser.Parse(args, 1) == false)
                {
                    return;
                }

                DataPointCollection trainingData = LoadTrainingData(
                    trainingDataPath.Value,
                    SSCLAS_DATA_PATH,
                    2,
                    DataDescriptor.HasClassLabels);

                TrainingParameters parameters = new TrainingParameters()
                {
                    MaxDecisionLevels                     = D.Value - 1,
                    NumberOfCandidateFeatures             = F.Value,
                    NumberOfCandidateThresholdsPerFeature = L.Value,
                    NumberOfTrees = T.Value,
                    Verbose       = verboseSwitch.Used
                };

                Forest <LinearFeatureResponse2d, SemiSupervisedClassificationStatisticsAggregator> forest = SemiSupervisedClassificationExample.Train(
                    trainingData, parameters, a.Value, b.Value);

                PointF plotPadding = new PointF(plotPaddingX.Value, plotPaddingY.Value);

                if (plotMode.Value == "labels")
                {
                    using (Bitmap result = SemiSupervisedClassificationExample.VisualizeLabels(forest, trainingData, new Size(300, 300), plotPadding))
                    {
                        ShowVisualizationImage(result);
                    }
                }
                else if (plotMode.Value == "density")
                {
                    using (Bitmap result = SemiSupervisedClassificationExample.VisualizeDensity(forest, trainingData, new Size(300, 300), plotPadding))
                    {
                        ShowVisualizationImage(result);
                    }
                }
                #endregion
            }
            else if (mode == "regression")
            {
                #region Regression
                CommandLineParser parser = new CommandLineParser();
                parser.Command = "SW " + mode.ToUpper();

                parser.AddArgument(trainingDataPath);
                parser.AddSwitch("T", T);
                parser.AddSwitch("D", D);
                parser.AddSwitch("F", F);
                parser.AddSwitch("L", L);

                parser.AddSwitch("PADX", plotPaddingX);
                parser.AddSwitch("PADY", plotPaddingY);
                parser.AddSwitch("VERBOSE", verboseSwitch);

                // Override default values for command line options
                T.Value = 10;
                D.Value = 2;
                a.Value = 0; // prior turned off by default
                b.Value = 900;

                if (args.Length == 1)
                {
                    parser.PrintHelp();
                    DisplayTextFiles(REGRESSION_DATA_PATH);
                    return;
                }

                if (parser.Parse(args, 1) == false)
                {
                    return;
                }

                RegressionExample regressionDemo = new RegressionExample();

                regressionDemo.PlotDilation.X = plotPaddingX.Value;
                regressionDemo.PlotDilation.Y = plotPaddingY.Value;

                regressionDemo.TrainingParameters = new TrainingParameters()
                {
                    MaxDecisionLevels                     = D.Value - 1,
                    NumberOfCandidateFeatures             = F.Value,
                    NumberOfCandidateThresholdsPerFeature = L.Value,
                    NumberOfTrees = T.Value,
                    Verbose       = verboseSwitch.Used
                };

                DataPointCollection trainingData = LoadTrainingData(
                    trainingDataPath.Value,
                    REGRESSION_DATA_PATH,
                    1,
                    DataDescriptor.HasTargetValues);

                using (Bitmap result = regressionDemo.Run(trainingData))
                {
                    ShowVisualizationImage(result);
                }
                #endregion
            }
            else
            {
                Console.WriteLine("Unrecognized command line argument, try SW HELP.");
                return;
            }
        }
Beispiel #3
0
        static void Main(string[] args)
        {
            if (args.Length == 0 || args[0] == "/?" || args[0].ToLower() == "help")
              {
            DisplayHelp();
            return;
              }

              // These command line parameters are reused over several command line modes...
              StringParameter trainingDataPath = new StringParameter("path", "Path of file containing training data.");
              NaturalParameter T = new NaturalParameter("t", "No. of trees in the forest (default = {0}).", 10);
              NaturalParameter D = new NaturalParameter("d", "Maximum tree levels (default = {0}).", 10, 20);
              NaturalParameter F = new NaturalParameter("f", "No. of candidate feature responses per decision node (default = {0}).", 10);
              NaturalParameter L = new NaturalParameter("l", "No. of candidate thresholds per feature response (default = {0}).", 1);
              SingleParameter a = new SingleParameter("a", "The number of 'effective' prior observations (default = {0}).", true, false, 10.0f);
              SingleParameter b = new SingleParameter("b", "The variance of the effective observations (default = {0}).", true, true, 400.0f);
              SimpleSwitchParameter verboseSwitch = new SimpleSwitchParameter("Enables verbose progress indication.");
              SingleParameter plotPaddingX = new SingleParameter("padx", "Pad plot horizontally (default = {0}).", true, false, 0.1f);
              SingleParameter plotPaddingY = new SingleParameter("pady", "Pad plot vertically (default = {0}).", true, false, 0.1f);
              EnumParameter split = new EnumParameter(
              "s",
              "Specify what kind of split function to use (default = {0}).",
              new string[] { "axis", "linear" },
              new string[] { "axis-aligned split", "linear split" },
              "axis");

              // Behaviour depends on command line mode...
              string mode = args[0].ToLower(); // first argument defines the command line mode
              if (mode == "clas" || mode == "class")
              {
            #region Supervised classification
            CommandLineParser parser = new CommandLineParser();

            parser.Command = "SW " + mode.ToUpper();

            parser.AddArgument(trainingDataPath);
            parser.AddSwitch("T", T);
            parser.AddSwitch("D", D);
            parser.AddSwitch("F", F);
            parser.AddSwitch("L", L);
            parser.AddSwitch("SPLIT", split);

            parser.AddSwitch("PADX", plotPaddingX);
            parser.AddSwitch("PADY", plotPaddingY);
            parser.AddSwitch("VERBOSE", verboseSwitch);

            // Default values up above should be fine here.

            if (args.Length == 1)
            {
              parser.PrintHelp();
              DisplayTextFiles(CLAS_DATA_PATH);
              return;
            }

            if (parser.Parse(args, 1) == false)
              return;

            TrainingParameters trainingParameters = new TrainingParameters()
            {
              MaxDecisionLevels = D.Value - 1,
              NumberOfCandidateFeatures = F.Value,
              NumberOfCandidateThresholdsPerFeature = L.Value,
              NumberOfTrees = T.Value,
              Verbose = verboseSwitch.Used
            };

            PointF plotDilation = new PointF(plotPaddingX.Value, plotPaddingY.Value);

            DataPointCollection trainingData = LoadTrainingData(
                trainingDataPath.Value,
                CLAS_DATA_PATH,
                2,
                DataDescriptor.HasClassLabels);

            if (split.Value == "linear")
            {
              Forest<LinearFeatureResponse2d, HistogramAggregator> forest = ClassificationExample.Train(
              trainingData,
              new LinearFeatureFactory(),
              trainingParameters);

              using (Bitmap result = ClassificationExample.Visualize(forest, trainingData, new Size(300, 300), plotDilation))
              {
            ShowVisualizationImage(result);
              }
            }
            else if (split.Value == "axis")
            {
              Forest<AxisAlignedFeatureResponse, HistogramAggregator> forest = ClassificationExample.Train(
              trainingData,
              new AxisAlignedFeatureFactory(),
              trainingParameters);

              using (Bitmap result = ClassificationExample.Visualize(forest, trainingData, new Size(300, 300), plotDilation))
              {
            ShowVisualizationImage(result);
              }
            }
            #endregion
              }
              else if (mode == "density")
              {
            #region Density Estimation
            CommandLineParser parser = new CommandLineParser();

            parser.Command = "SW " + mode.ToUpper();

            parser.AddArgument(trainingDataPath);
            parser.AddSwitch("T", T);
            parser.AddSwitch("D", D);
            parser.AddSwitch("F", F);
            parser.AddSwitch("L", L);

            // For density estimation (and semi-supervised learning) we add
            // a command line option to set the hyperparameters of the prior.
            parser.AddSwitch("a", a);
            parser.AddSwitch("b", b);

            parser.AddSwitch("PADX", plotPaddingX);
            parser.AddSwitch("PADY", plotPaddingY);
            parser.AddSwitch("VERBOSE", verboseSwitch);

            // Override default values for command line options.
            T.Value = 1;
            D.Value = 3;
            F.Value = 5;
            L.Value = 1;
            a.Value = 0;
            b.Value = 900;

            if (args.Length == 1)
            {
              parser.PrintHelp();
              DisplayTextFiles(DENSITY_DATA_PATH);
              return;
            }

            if (parser.Parse(args, 1) == false)
              return;

            TrainingParameters parameters = new TrainingParameters()
            {
              MaxDecisionLevels = D.Value - 1,
              NumberOfCandidateFeatures = F.Value,
              NumberOfCandidateThresholdsPerFeature = L.Value,
              NumberOfTrees = T.Value,
              Verbose = verboseSwitch.Used
            };

            DataPointCollection trainingData = LoadTrainingData(
                trainingDataPath.Value,
                DENSITY_DATA_PATH,
                2,
                DataDescriptor.Unadorned);

            Forest<AxisAlignedFeatureResponse, GaussianAggregator2d> forest = DensityEstimationExample.Train(trainingData, parameters, a.Value, b.Value);

            PointF plotDilation = new PointF(plotPaddingX.Value, plotPaddingY.Value);

            using (Bitmap result = DensityEstimationExample.Visualize(forest, trainingData, new Size(300, 300), plotDilation))
            {
              ShowVisualizationImage(result);
            }
            #endregion
              }
              else if (mode == "ssclas" || mode == "ssclas")
              {
            #region Semi-supervised classification

            CommandLineParser parser = new CommandLineParser();

            parser.Command = "SW " + mode.ToUpper();

            parser.AddArgument(trainingDataPath);
            parser.AddSwitch("T", T);
            parser.AddSwitch("D", D);
            parser.AddSwitch("F", F);
            parser.AddSwitch("L", L);

            parser.AddSwitch("split", split);

            parser.AddSwitch("a", a);
            parser.AddSwitch("b", b);

            EnumParameter plotMode = new EnumParameter(
            "plot",
            "Determines what to plot",
            new string[] { "density", "labels" },
            new string[] { "plot recovered density estimate", "plot class likelihood" },
            "labels");
            parser.AddSwitch("plot", plotMode);

            parser.AddSwitch("PADX", plotPaddingX);
            parser.AddSwitch("PADY", plotPaddingY);

            parser.AddSwitch("VERBOSE", verboseSwitch);

            // Override default values for command line options.
            T.Value = 10;
            D.Value = 12 - 1;
            F.Value = 30;
            L.Value = 1;

            if (args.Length == 1)
            {
              parser.PrintHelp();
              DisplayTextFiles(SSCLAS_DATA_PATH);
              return;
            }

            if (parser.Parse(args, 1) == false)
              return;

            DataPointCollection trainingData = LoadTrainingData(
                trainingDataPath.Value,
                SSCLAS_DATA_PATH,
                2,
                DataDescriptor.HasClassLabels);

            TrainingParameters parameters = new TrainingParameters()
            {
              MaxDecisionLevels = D.Value - 1,
              NumberOfCandidateFeatures = F.Value,
              NumberOfCandidateThresholdsPerFeature = L.Value,
              NumberOfTrees = T.Value,
              Verbose = verboseSwitch.Used
            };

            Forest<LinearFeatureResponse2d, SemiSupervisedClassificationStatisticsAggregator> forest = SemiSupervisedClassificationExample.Train(
            trainingData, parameters, a.Value, b.Value);

            PointF plotPadding = new PointF(plotPaddingX.Value, plotPaddingY.Value);

            if (plotMode.Value == "labels")
            {
              using (Bitmap result = SemiSupervisedClassificationExample.VisualizeLabels(forest, trainingData, new Size(300, 300), plotPadding))
              {
            ShowVisualizationImage(result);
              }
            }
            else if (plotMode.Value == "density")
            {
              using (Bitmap result = SemiSupervisedClassificationExample.VisualizeDensity(forest, trainingData, new Size(300, 300), plotPadding))
              {
            ShowVisualizationImage(result);
              }
            }
            #endregion
              }
              else if (mode == "regression")
              {
            #region Regression
            CommandLineParser parser = new CommandLineParser();
            parser.Command = "SW " + mode.ToUpper();

            parser.AddArgument(trainingDataPath);
            parser.AddSwitch("T", T);
            parser.AddSwitch("D", D);
            parser.AddSwitch("F", F);
            parser.AddSwitch("L", L);

            parser.AddSwitch("PADX", plotPaddingX);
            parser.AddSwitch("PADY", plotPaddingY);
            parser.AddSwitch("VERBOSE", verboseSwitch);

            // Override default values for command line options
            T.Value = 10;
            D.Value = 2;
            a.Value = 0; // prior turned off by default
            b.Value = 900;

            if (args.Length == 1)
            {
              parser.PrintHelp();
              DisplayTextFiles(REGRESSION_DATA_PATH);
              return;
            }

            if (parser.Parse(args, 1) == false)
              return;

            RegressionExample regressionDemo = new RegressionExample();

            regressionDemo.PlotDilation.X = plotPaddingX.Value;
            regressionDemo.PlotDilation.Y = plotPaddingY.Value;

            regressionDemo.TrainingParameters = new TrainingParameters()
            {
              MaxDecisionLevels = D.Value - 1,
              NumberOfCandidateFeatures = F.Value,
              NumberOfCandidateThresholdsPerFeature = L.Value,
              NumberOfTrees = T.Value,
              Verbose = verboseSwitch.Used
            };

            DataPointCollection trainingData = LoadTrainingData(
            trainingDataPath.Value,
            REGRESSION_DATA_PATH,
            1,
            DataDescriptor.HasTargetValues);

            using (Bitmap result = regressionDemo.Run(trainingData))
            {
              ShowVisualizationImage(result);
            }
            #endregion
              }
              else
              {
            Console.WriteLine("Unrecognized command line argument, try SW HELP.");
            return;
              }
        }