/// <summary>
 /// Predict a target using a decision tree regression model trained with the <see cref="LightGbmRegressorTrainer"/>.
 /// </summary>
 /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
 /// <param name="options">Advanced options to the algorithm.</param>
 /// <example>
 /// <format type="text/markdown">
 /// <![CDATA[
 /// [!code-csharp[ScoreTensorFlowModel](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Regression/LightGBMRegressionWithOptions.cs)]
 /// ]]>
 /// </format>
 /// </example>
 public static LightGbmRegressorTrainer LightGbm(this RegressionCatalog.RegressionTrainers catalog,
     Options options)
 {
     Contracts.CheckValue(catalog, nameof(catalog));
     var env = CatalogUtils.GetEnvironment(catalog);
     return new LightGbmRegressorTrainer(env, options);
 }
Beispiel #2
0
        /// <summary>
        /// Predict a target using generalized additive models trained with the <see cref="RegressionGamTrainer"/>.
        /// </summary>
        /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
        /// <param name="options">Algorithm advanced settings.</param>
        public static RegressionGamTrainer GeneralizedAdditiveModels(this RegressionCatalog.RegressionTrainers catalog,
                                                                     RegressionGamTrainer.Options options)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            var env = CatalogUtils.GetEnvironment(catalog);

            return(new RegressionGamTrainer(env, options));
        }
        /// <summary>
        /// Create <see cref="GamRegressionTrainer"/> using advanced options, which predicts a target using generalized additive models (GAM).
        /// </summary>
        /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
        /// <param name="options">Trainer options.</param>
        /// <example>
        /// <format type="text/markdown">
        /// <![CDATA[
        /// [!code-csharp[Gam](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Regression/GamWithOptions.cs)]
        /// ]]>
        /// </format>
        /// </example>
        public static GamRegressionTrainer Gam(this RegressionCatalog.RegressionTrainers catalog,
                                               GamRegressionTrainer.Options options)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            var env = CatalogUtils.GetEnvironment(catalog);

            return(new GamRegressionTrainer(env, options));
        }
Beispiel #4
0
        /// <summary>
        /// Predict a target using a linear regression model trained with the <see cref="Microsoft.ML.Trainers.PoissonRegression"/> trainer.
        /// </summary>
        /// <param name="catalog">The regression catalog trainer object.</param>
        /// <param name="options">Advanced arguments to the algorithm.</param>
        public static PoissonRegression PoissonRegression(this RegressionCatalog.RegressionTrainers catalog, PoissonRegression.Options options)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            Contracts.CheckValue(options, nameof(options));

            var env = CatalogUtils.GetEnvironment(catalog);

            return(new PoissonRegression(env, options));
        }
Beispiel #5
0
        /// <summary>
        /// Predict a target using a linear regression model trained with the SDCA trainer.
        /// </summary>
        /// <param name="catalog">The regression catalog trainer object.</param>
        /// <param name="options">Advanced arguments to the algorithm.</param>
        public static SdcaRegressionTrainer StochasticDualCoordinateAscent(this RegressionCatalog.RegressionTrainers catalog,
                                                                           SdcaRegressionTrainer.Options options)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            Contracts.CheckValue(options, nameof(options));

            var env = CatalogUtils.GetEnvironment(catalog);

            return(new SdcaRegressionTrainer(env, options));
        }
Beispiel #6
0
        /// <summary>
        /// Predict a target using a decision tree regression model trained with the <see cref="FastTreeRegressionTrainer"/>.
        /// </summary>
        /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
        /// <param name="options">Algorithm advanced settings.</param>
        public static FastTreeRegressionTrainer FastTree(this RegressionCatalog.RegressionTrainers catalog,
                                                         FastTreeRegressionTrainer.Options options)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            Contracts.CheckValue(options, nameof(options));

            var env = CatalogUtils.GetEnvironment(catalog);

            return(new FastTreeRegressionTrainer(env, options));
        }
Beispiel #7
0
        /// <summary>
        /// Create <see cref="OlsTrainer"/> with advanced options, which predicts a target using a linear regression model.
        /// </summary>
        /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
        /// <param name="options">Algorithm advanced options. See <see cref="OlsTrainer.Options"/>.</param>
        /// <example>
        /// <format type="text/markdown">
        /// <![CDATA[
        /// [!code-csharp[OrdinaryLeastSquares](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Regression/OrdinaryLeastSquaresWithOptions.cs)]
        /// ]]>
        /// </format>
        /// </example>
        public static OlsTrainer Ols(
            this RegressionCatalog.RegressionTrainers catalog,
            OlsTrainer.Options options)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            Contracts.CheckValue(options, nameof(options));

            var env = CatalogUtils.GetEnvironment(catalog);
            return new OlsTrainer(env, options);
        }
Beispiel #8
0
        /// <summary>
        /// Predict a target using a linear regression model trained with the <see cref="OnlineGradientDescentTrainer"/> trainer.
        /// </summary>
        /// <param name="catalog">The regression catalog trainer object.</param>
        /// <param name="options">Advanced arguments to the algorithm.</param>
        public static OnlineGradientDescentTrainer OnlineGradientDescent(this RegressionCatalog.RegressionTrainers catalog,
                                                                         OnlineGradientDescentTrainer.Options options)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            Contracts.CheckValue(options, nameof(options));

            var env = CatalogUtils.GetEnvironment(catalog);

            return(new OnlineGradientDescentTrainer(env, options));
        }
Beispiel #9
0
        /// <summary>
        /// Predict a target using a decision tree regression model trained with the <see cref="FastForestRegression"/>.
        /// </summary>
        /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
        /// <param name="labelColumn">The labelColumn column.</param>
        /// <param name="featureColumn">The featureColumn column.</param>
        /// <param name="weights">The optional weights column.</param>
        /// <param name="numTrees">Total number of decision trees to create in the ensemble.</param>
        /// <param name="numLeaves">The maximum number of leaves per decision tree.</param>
        /// <param name="minDatapointsInLeaves">The minimal number of datapoints allowed in a leaf of the tree, out of the subsampled data.</param>
        public static FastForestRegression FastForest(this RegressionCatalog.RegressionTrainers catalog,
                                                      string labelColumn        = DefaultColumnNames.Label,
                                                      string featureColumn      = DefaultColumnNames.Features,
                                                      string weights            = null,
                                                      int numLeaves             = Defaults.NumLeaves,
                                                      int numTrees              = Defaults.NumTrees,
                                                      int minDatapointsInLeaves = Defaults.MinDocumentsInLeaves)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            var env = CatalogUtils.GetEnvironment(catalog);

            return(new FastForestRegression(env, labelColumn, featureColumn, weights, numLeaves, numTrees, minDatapointsInLeaves));
        }
 /// <summary>
 /// Predict a target using a decision tree regression model trained with the <see cref="LightGbmRegressorTrainer"/>.
 /// </summary>
 /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
 /// <param name="labelColumn">The labelColumn column.</param>
 /// <param name="featureColumn">The features column.</param>
 /// <param name="weights">The weights column.</param>
 /// <param name="numLeaves">The number of leaves to use.</param>
 /// <param name="numBoostRound">Number of iterations.</param>
 /// <param name="minDataPerLeaf">The minimal number of documents allowed in a leaf of the tree, out of the subsampled data.</param>
 /// <param name="learningRate">The learning rate.</param>
 /// <example>
 /// <format type="text/markdown">
 /// <![CDATA[
 /// [!code-csharp[ScoreTensorFlowModel](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Regression/LightGBMRegression.cs)]
 /// ]]>
 /// </format>
 /// </example>
 public static LightGbmRegressorTrainer LightGbm(this RegressionCatalog.RegressionTrainers catalog,
     string labelColumn = DefaultColumnNames.Label,
     string featureColumn = DefaultColumnNames.Features,
     string weights = null,
     int? numLeaves = null,
     int? minDataPerLeaf = null,
     double? learningRate = null,
     int numBoostRound = Options.Defaults.NumBoostRound)
 {
     Contracts.CheckValue(catalog, nameof(catalog));
     var env = CatalogUtils.GetEnvironment(catalog);
     return new LightGbmRegressorTrainer(env, labelColumn, featureColumn, weights, numLeaves, minDataPerLeaf, learningRate, numBoostRound);
 }
Beispiel #11
0
        /// <summary>
        /// Predict a target using generalized additive models trained with the <see cref="RegressionGamTrainer"/>.
        /// </summary>
        /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
        /// <param name="labelColumn">The labelColumn column.</param>
        /// <param name="featureColumn">The featureColumn column.</param>
        /// <param name="weights">The optional weights column.</param>
        /// <param name="numIterations">The number of iterations to use in learning the features.</param>
        /// <param name="learningRate">The learning rate. GAMs work best with a small learning rate.</param>
        /// <param name="maxBins">The maximum number of bins to use to approximate features.</param>
        public static RegressionGamTrainer GeneralizedAdditiveModels(this RegressionCatalog.RegressionTrainers catalog,
                                                                     string labelColumn   = DefaultColumnNames.Label,
                                                                     string featureColumn = DefaultColumnNames.Features,
                                                                     string weights       = null,
                                                                     int numIterations    = GamDefaults.NumIterations,
                                                                     double learningRate  = GamDefaults.LearningRates,
                                                                     int maxBins          = GamDefaults.MaxBins)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            var env = CatalogUtils.GetEnvironment(catalog);

            return(new RegressionGamTrainer(env, labelColumn, featureColumn, weights, numIterations, learningRate, maxBins));
        }
Beispiel #12
0
        /// <summary>
        /// Predict a target using a decision tree regression model trained with the <see cref="FastForestRegression"/>.
        /// </summary>
        /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
        /// <param name="labelColumnName">The name of the label column.</param>
        /// <param name="featureColumnName">The name of the feature column.</param>
        /// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
        /// <param name="numberOfLeaves">The maximum number of leaves per decision tree.</param>
        /// <param name="numberOfTrees">Total number of decision trees to create in the ensemble.</param>
        /// <param name="minDatapointsInLeaves">The minimal number of datapoints allowed in a leaf of the tree, out of the subsampled data.</param>
        public static FastForestRegression FastForest(this RegressionCatalog.RegressionTrainers catalog,
                                                      string labelColumnName         = DefaultColumnNames.Label,
                                                      string featureColumnName       = DefaultColumnNames.Features,
                                                      string exampleWeightColumnName = null,
                                                      int numberOfLeaves             = Defaults.NumberOfLeaves,
                                                      int numberOfTrees         = Defaults.NumberOfTrees,
                                                      int minDatapointsInLeaves = Defaults.MinimumExampleCountPerLeaf)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            var env = CatalogUtils.GetEnvironment(catalog);

            return(new FastForestRegression(env, labelColumnName, featureColumnName, exampleWeightColumnName, numberOfLeaves, numberOfTrees, minDatapointsInLeaves));
        }
Beispiel #13
0
        /// <summary>
        /// Predict a target using generalized additive models trained with the <see cref="RegressionGamTrainer"/>.
        /// </summary>
        /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
        /// <param name="labelColumnName">The name of the label column.</param>
        /// <param name="featureColumnName">The name of the feature column.</param>
        /// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
        /// <param name="numberOfIterations">The number of iterations to use in learning the features.</param>
        /// <param name="maximumBinCountPerFeature">The maximum number of bins to use to approximate features.</param>
        /// <param name="learningRate">The learning rate. GAMs work best with a small learning rate.</param>
        public static RegressionGamTrainer GeneralizedAdditiveModels(this RegressionCatalog.RegressionTrainers catalog,
                                                                     string labelColumnName         = DefaultColumnNames.Label,
                                                                     string featureColumnName       = DefaultColumnNames.Features,
                                                                     string exampleWeightColumnName = null,
                                                                     int numberOfIterations         = GamDefaults.NumberOfIterations,
                                                                     int maximumBinCountPerFeature  = GamDefaults.MaximumBinCountPerFeature,
                                                                     double learningRate            = GamDefaults.LearningRate)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            var env = CatalogUtils.GetEnvironment(catalog);

            return(new RegressionGamTrainer(env, labelColumnName, featureColumnName, exampleWeightColumnName, numberOfIterations, learningRate, maximumBinCountPerFeature));
        }
Beispiel #14
0
        /// <summary>
        /// Predict a target using a decision tree regression model trained with the <see cref="FastTreeRegressionTrainer"/>.
        /// </summary>
        /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
        /// <param name="labelColumnName">The name of the label column.</param>
        /// <param name="featureColumnName">The name of the feature column.</param>
        /// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
        /// <param name="numTrees">Total number of decision trees to create in the ensemble.</param>
        /// <param name="numLeaves">The maximum number of leaves per decision tree.</param>
        /// <param name="minDatapointsInLeaves">The minimal number of datapoints allowed in a leaf of a regression tree, out of the subsampled data.</param>
        /// <param name="learningRate">The learning rate.</param>
        public static FastTreeRegressionTrainer FastTree(this RegressionCatalog.RegressionTrainers catalog,
                                                         string labelColumnName         = DefaultColumnNames.Label,
                                                         string featureColumnName       = DefaultColumnNames.Features,
                                                         string exampleWeightColumnName = null,
                                                         int numLeaves             = Defaults.NumLeaves,
                                                         int numTrees              = Defaults.NumTrees,
                                                         int minDatapointsInLeaves = Defaults.MinDocumentsInLeaves,
                                                         double learningRate       = Defaults.LearningRates)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            var env = CatalogUtils.GetEnvironment(catalog);

            return(new FastTreeRegressionTrainer(env, labelColumnName, featureColumnName, exampleWeightColumnName, numLeaves, numTrees, minDatapointsInLeaves, learningRate));
        }
        /// <summary>
        /// Predict a target using a decision tree regression model trained with the <see cref="LightGbmRegressorTrainer"/>.
        /// </summary>
        /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
        /// <param name="labelColumnName">The name of the label column.</param>
        /// <param name="featureColumnName">The name of the feature column.</param>
        /// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
        /// <param name="numberOfLeaves">The number of leaves to use.</param>
        /// <param name="minimumExampleCountPerLeaf">The minimal number of data points allowed in a leaf of the tree, out of the subsampled data.</param>
        /// <param name="learningRate">The learning rate.</param>
        /// <param name="numberOfIterations">The number of iterations to use.</param>
        /// <example>
        /// <format type="text/markdown">
        /// <![CDATA[
        /// [!code-csharp[ScoreTensorFlowModel](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Regression/LightGBMRegression.cs)]
        /// ]]>
        /// </format>
        /// </example>
        public static LightGbmRegressorTrainer LightGbm(this RegressionCatalog.RegressionTrainers catalog,
                                                        string labelColumnName         = DefaultColumnNames.Label,
                                                        string featureColumnName       = DefaultColumnNames.Features,
                                                        string exampleWeightColumnName = null,
                                                        int?numberOfLeaves             = null,
                                                        int?minimumExampleCountPerLeaf = null,
                                                        double?learningRate            = null,
                                                        int numberOfIterations         = Options.Defaults.NumberOfIterations)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            var env = CatalogUtils.GetEnvironment(catalog);

            return(new LightGbmRegressorTrainer(env, labelColumnName, featureColumnName, exampleWeightColumnName, numberOfLeaves, minimumExampleCountPerLeaf, learningRate, numberOfIterations));
        }
        /// <summary>
        /// Create <see cref="FastTreeTweedieTrainer"/>, which predicts a target using a decision tree regression model.
        /// </summary>
        /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
        /// <param name="labelColumnName">The name of the label column. The column data must be <see cref="System.Single"/>.</param>
        /// <param name="featureColumnName">The name of the feature column. The column data must be a known-sized vector of <see cref="System.Single"/>.</param>
        /// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
        /// <param name="numberOfTrees">Total number of decision trees to create in the ensemble.</param>
        /// <param name="numberOfLeaves">The maximum number of leaves per decision tree.</param>
        /// <param name="minimumExampleCountPerLeaf">The minimal number of data points required to form a new tree leaf.</param>
        /// <param name="learningRate">The learning rate.</param>
        /// <example>
        /// <format type="text/markdown">
        /// <![CDATA[
        /// [!code-csharp[FastTreeTweedie](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Regression/FastTreeTweedie.cs)]
        /// ]]>
        /// </format>
        /// </example>
        public static FastTreeTweedieTrainer FastTreeTweedie(this RegressionCatalog.RegressionTrainers catalog,
                                                             string labelColumnName         = DefaultColumnNames.Label,
                                                             string featureColumnName       = DefaultColumnNames.Features,
                                                             string exampleWeightColumnName = null,
                                                             int numberOfLeaves             = Defaults.NumberOfLeaves,
                                                             int numberOfTrees = Defaults.NumberOfTrees,
                                                             int minimumExampleCountPerLeaf = Defaults.MinimumExampleCountPerLeaf,
                                                             double learningRate            = Defaults.LearningRate)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            var env = CatalogUtils.GetEnvironment(catalog);

            return(new FastTreeTweedieTrainer(env, labelColumnName, featureColumnName, exampleWeightColumnName, numberOfLeaves, numberOfTrees, minimumExampleCountPerLeaf, learningRate));
        }
Beispiel #17
0
        /// <summary>
        /// Predict a target using a linear regression model trained with the SDCA trainer.
        /// </summary>
        /// <param name="catalog">The regression catalog trainer object.</param>
        /// <param name="labelColumnName">The label column, or dependent variable.</param>
        /// <param name="featureColumnName">The features, or independent variables.</param>
        /// <param name="weightColumnName">The optional example weights.</param>
        /// <param name="l2Const">The L2 regularization hyperparameter.</param>
        /// <param name="l1Threshold">The L1 regularization hyperparameter. Higher values will tend to lead to more sparse model.</param>
        /// <param name="maxIterations">The maximum number of passes to perform over the data.</param>
        /// <param name="loss">The custom loss, if unspecified will be <see cref="SquaredLoss"/>.</param>

        public static SdcaRegressionTrainer StochasticDualCoordinateAscent(this RegressionCatalog.RegressionTrainers catalog,
                                                                           string labelColumnName          = DefaultColumnNames.Label,
                                                                           string featureColumnName        = DefaultColumnNames.Features,
                                                                           string weightColumnName         = null,
                                                                           ISupportSdcaRegressionLoss loss = null,
                                                                           float?l2Const     = null,
                                                                           float?l1Threshold = null,
                                                                           int?maxIterations = null)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            var env = CatalogUtils.GetEnvironment(catalog);

            return(new SdcaRegressionTrainer(env, labelColumnName, featureColumnName, weightColumnName, loss, l2Const, l1Threshold, maxIterations));
        }
Beispiel #18
0
        /// <summary>
        /// Predict a target using a linear regression model trained with the <see cref="Microsoft.ML.Trainers.PoissonRegression"/> trainer.
        /// </summary>
        /// <param name="catalog">The regression catalog trainer object.</param>
        /// <param name="labelColumn">The labelColumn, or dependent variable.</param>
        /// <param name="featureColumn">The features, or independent variables.</param>
        /// <param name="weights">The optional example weights.</param>
        /// <param name="l1Weight">Weight of L1 regularization term.</param>
        /// <param name="l2Weight">Weight of L2 regularization term.</param>
        /// <param name="optimizationTolerance">Threshold for optimizer convergence.</param>
        /// <param name="memorySize">Memory size for <see cref="Microsoft.ML.Trainers.PoissonRegression"/>. Low=faster, less accurate.</param>
        /// <param name="enforceNoNegativity">Enforce non-negative weights.</param>
        public static PoissonRegression PoissonRegression(this RegressionCatalog.RegressionTrainers catalog,
                                                          string labelColumn          = DefaultColumnNames.Label,
                                                          string featureColumn        = DefaultColumnNames.Features,
                                                          string weights              = null,
                                                          float l1Weight              = LROptions.Defaults.L1Weight,
                                                          float l2Weight              = LROptions.Defaults.L2Weight,
                                                          float optimizationTolerance = LROptions.Defaults.OptTol,
                                                          int memorySize              = LROptions.Defaults.MemorySize,
                                                          bool enforceNoNegativity    = LROptions.Defaults.EnforceNonNegativity)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            var env = CatalogUtils.GetEnvironment(catalog);

            return(new PoissonRegression(env, labelColumn, featureColumn, weights, l1Weight, l2Weight, optimizationTolerance, memorySize, enforceNoNegativity));
        }
Beispiel #19
0
        /// <summary>
        /// Predict a target using a linear regression model trained with the <see cref="OnlineGradientDescentTrainer"/> trainer.
        /// </summary>
        /// <param name="catalog">The regression catalog trainer object.</param>
        /// <param name="labelColumn">The name of the label, or dependent variable.</param>
        /// <param name="featureColumn">The features, or independent variables.</param>
        /// <param name="lossFunction">The custom loss. Defaults to <see cref="SquaredLoss"/> if not provided.</param>
        /// <param name="learningRate">The learning Rate.</param>
        /// <param name="decreaseLearningRate">Decrease learning rate as iterations progress.</param>
        /// <param name="l2RegularizerWeight">L2 regularization weight.</param>
        /// <param name="numIterations">Number of training iterations through the data.</param>
        public static OnlineGradientDescentTrainer OnlineGradientDescent(this RegressionCatalog.RegressionTrainers catalog,
                                                                         string labelColumn           = DefaultColumnNames.Label,
                                                                         string featureColumn         = DefaultColumnNames.Features,
                                                                         IRegressionLoss lossFunction = null,
                                                                         float learningRate           = OnlineGradientDescentTrainer.Options.OgdDefaultArgs.LearningRate,
                                                                         bool decreaseLearningRate    = OnlineGradientDescentTrainer.Options.OgdDefaultArgs.DecreaseLearningRate,
                                                                         float l2RegularizerWeight    = AveragedLinearArguments.AveragedDefaultArgs.L2RegularizerWeight,
                                                                         int numIterations            = OnlineLinearArguments.OnlineDefaultArgs.NumIterations)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            var env = CatalogUtils.GetEnvironment(catalog);

            return(new OnlineGradientDescentTrainer(env, labelColumn, featureColumn, learningRate, decreaseLearningRate, l2RegularizerWeight,
                                                    numIterations, lossFunction));
        }
        /// <summary>
        /// Predict a target using a linear regression model trained with the <see cref="OlsTrainer"/>.
        /// </summary>
        /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
        /// <param name="labelColumnName">The name of the label column.</param>
        /// <param name="featureColumnName">The name of the feature column.</param>
        /// <param name="exampleWeightColumnName">The name of the example weight column (optional).</param>
        /// <example>
        /// <format type="text/markdown">
        /// <![CDATA[
        /// [!code-csharp[OrdinaryLeastSquares](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Trainers/Regression/OrdinaryLeastSquares.cs)]
        /// ]]>
        /// </format>
        /// </example>
        public static OlsTrainer Ols(this RegressionCatalog.RegressionTrainers catalog,
                                     string labelColumnName         = DefaultColumnNames.Label,
                                     string featureColumnName       = DefaultColumnNames.Features,
                                     string exampleWeightColumnName = null)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            var env     = CatalogUtils.GetEnvironment(catalog);
            var options = new OlsTrainer.Options
            {
                LabelColumnName         = labelColumnName,
                FeatureColumnName       = featureColumnName,
                ExampleWeightColumnName = exampleWeightColumnName
            };

            return(new OlsTrainer(env, options));
        }
Beispiel #21
0
        /// <summary>
        /// Predict a target using a linear regression model trained with the <see cref="OlsLinearRegressionTrainer"/>.
        /// </summary>
        /// <param name="catalog">The <see cref="RegressionCatalog"/>.</param>
        /// <param name="labelColumn">The labelColumn column.</param>
        /// <param name="featureColumn">The features column.</param>
        /// <param name="weights">The weights column.</param>
        public static OlsLinearRegressionTrainer OrdinaryLeastSquares(this RegressionCatalog.RegressionTrainers catalog,
                                                                      string labelColumn   = DefaultColumnNames.Label,
                                                                      string featureColumn = DefaultColumnNames.Features,
                                                                      string weights       = null)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            var env     = CatalogUtils.GetEnvironment(catalog);
            var options = new OlsLinearRegressionTrainer.Options
            {
                LabelColumn   = labelColumn,
                FeatureColumn = featureColumn,
                WeightColumn  = weights != null ? Optional <string> .Explicit(weights) : Optional <string> .Implicit(DefaultColumnNames.Weight)
            };

            return(new OlsLinearRegressionTrainer(env, options));
        }