Beispiel #1
0
        private void RunCore(IChannel ch)
        {
            Host.AssertValue(ch);

            ch.Trace("Creating loader");

            LoadModelObjects(ch, true, out var predictor, true, out var trainSchema, out var loader);
            ch.AssertValue(predictor);
            ch.AssertValueOrNull(trainSchema);
            ch.AssertValue(loader);

            ch.Trace("Creating pipeline");
            var scorer = Args.Scorer;

            ch.Assert(scorer == null || scorer is ICommandLineComponentFactory, "ScoreCommand should only be used from the command line.");
            var bindable = ScoreUtils.GetSchemaBindableMapper(Host, predictor, scorerFactorySettings: scorer as ICommandLineComponentFactory);

            ch.AssertValue(bindable);

            // REVIEW: We probably ought to prefer role mappings from the training schema.
            string feat = TrainUtils.MatchNameOrDefaultOrNull(ch, loader.Schema,
                                                              nameof(Args.FeatureColumn), Args.FeatureColumn, DefaultColumnNames.Features);
            string group = TrainUtils.MatchNameOrDefaultOrNull(ch, loader.Schema,
                                                               nameof(Args.GroupColumn), Args.GroupColumn, DefaultColumnNames.GroupId);
            var customCols = TrainUtils.CheckAndGenerateCustomColumns(ch, Args.CustomColumn);
            var schema     = new RoleMappedSchema(loader.Schema, label: null, feature: feat, group: group, custom: customCols, opt: true);
            var mapper     = bindable.Bind(Host, schema);

            if (scorer == null)
            {
                scorer = ScoreUtils.GetScorerComponent(Host, mapper);
            }

            loader = CompositeDataLoader.ApplyTransform(Host, loader, "Scorer", scorer.ToString(),
                                                        (env, view) => scorer.CreateComponent(env, view, mapper, trainSchema));

            loader = CompositeDataLoader.Create(Host, loader, Args.PostTransform);

            if (!string.IsNullOrWhiteSpace(Args.OutputModelFile))
            {
                ch.Trace("Saving the data pipe");
                SaveLoader(loader, Args.OutputModelFile);
            }

            ch.Trace("Creating saver");
            IDataSaver writer;

            if (Args.Saver == null)
            {
                var ext    = Path.GetExtension(Args.OutputDataFile);
                var isText = ext == ".txt" || ext == ".tlc";
                if (isText)
                {
                    writer = new TextSaver(Host, new TextSaver.Arguments());
                }
                else
                {
                    writer = new BinarySaver(Host, new BinarySaver.Arguments());
                }
            }
            else
            {
                writer = Args.Saver.CreateComponent(Host);
            }
            ch.Assert(writer != null);
            var outputIsBinary = writer is BinaryWriter;

            bool outputAllColumns =
                Args.OutputAllColumns == true ||
                (Args.OutputAllColumns == null && Utils.Size(Args.OutputColumn) == 0 && outputIsBinary);

            bool outputNamesAndLabels =
                Args.OutputAllColumns == true || Utils.Size(Args.OutputColumn) == 0;

            if (Args.OutputAllColumns == true && Utils.Size(Args.OutputColumn) != 0)
            {
                ch.Warning(nameof(Args.OutputAllColumns) + "=+ always writes all columns irrespective of " + nameof(Args.OutputColumn) + " specified.");
            }

            if (!outputAllColumns && Utils.Size(Args.OutputColumn) != 0)
            {
                foreach (var outCol in Args.OutputColumn)
                {
                    if (!loader.Schema.TryGetColumnIndex(outCol, out int dummyColIndex))
                    {
                        throw ch.ExceptUserArg(nameof(Arguments.OutputColumn), "Column '{0}' not found.", outCol);
                    }
                }
            }

            uint maxScoreId = 0;

            if (!outputAllColumns)
            {
                maxScoreId = loader.Schema.GetMaxMetadataKind(out int colMax, MetadataUtils.Kinds.ScoreColumnSetId);
            }
            ch.Assert(outputAllColumns || maxScoreId > 0); // score set IDs are one-based
            var cols = new List <int>();

            for (int i = 0; i < loader.Schema.Count; i++)
            {
                if (!Args.KeepHidden && loader.Schema.IsHidden(i))
                {
                    continue;
                }
                if (!(outputAllColumns || ShouldAddColumn(loader.Schema, i, maxScoreId, outputNamesAndLabels)))
                {
                    continue;
                }
                var type = loader.Schema.GetColumnType(i);
                if (writer.IsColumnSavable(type))
                {
                    cols.Add(i);
                }
                else
                {
                    ch.Warning("The column '{0}' will not be written as it has unsavable column type.",
                               loader.Schema.GetColumnName(i));
                }
            }

            ch.Check(cols.Count > 0, "No valid columns to save");

            ch.Trace("Scoring and saving data");
            using (var file = Host.CreateOutputFile(Args.OutputDataFile))
                using (var stream = file.CreateWriteStream())
                    writer.SaveData(stream, loader, cols.ToArray());
        }
            private FoldResult RunFold(int fold)
            {
                var host = GetHost();

                host.Assert(0 <= fold && fold <= _numFolds);
                // REVIEW: Make channels buffered in multi-threaded environments.
                using (var ch = host.Start($"Fold {fold}"))
                {
                    ch.Trace("Constructing trainer");
                    ITrainer trainer = _trainer.CreateInstance(host);

                    // Train pipe.
                    var trainFilter = new RangeFilter.Arguments();
                    trainFilter.Column     = _splitColumn;
                    trainFilter.Min        = (Double)fold / _numFolds;
                    trainFilter.Max        = (Double)(fold + 1) / _numFolds;
                    trainFilter.Complement = true;
                    IDataView trainPipe = new RangeFilter(host, trainFilter, _inputDataView);
                    trainPipe = new OpaqueDataView(trainPipe);
                    var trainData = _createExamples(host, ch, trainPipe, trainer);

                    // Test pipe.
                    var testFilter = new RangeFilter.Arguments();
                    testFilter.Column = trainFilter.Column;
                    testFilter.Min    = trainFilter.Min;
                    testFilter.Max    = trainFilter.Max;
                    ch.Assert(!testFilter.Complement);
                    IDataView testPipe = new RangeFilter(host, testFilter, _inputDataView);
                    testPipe = new OpaqueDataView(testPipe);
                    var testData = _applyTransformsToTestData(host, ch, testPipe, trainData, trainPipe);

                    // Validation pipe and examples.
                    RoleMappedData validData = null;
                    if (_getValidationDataView != null)
                    {
                        ch.Assert(_applyTransformsToValidationData != null);
                        if (!trainer.Info.SupportsValidation)
                        {
                            ch.Warning("Trainer does not accept validation dataset.");
                        }
                        else
                        {
                            ch.Trace("Constructing the validation pipeline");
                            IDataView validLoader = _getValidationDataView();
                            var       validPipe   = ApplyTransformUtils.ApplyAllTransformsToData(host, _inputDataView, validLoader);
                            validPipe = new OpaqueDataView(validPipe);
                            validData = _applyTransformsToValidationData(host, ch, validPipe, trainData, trainPipe);
                        }
                    }

                    // Train.
                    var predictor = TrainUtils.Train(host, ch, trainData, trainer, _trainer.Kind, validData,
                                                     _calibrator, _maxCalibrationExamples, _cacheData, _inputPredictor);

                    // Score.
                    ch.Trace("Scoring and evaluating");
                    var bindable = ScoreUtils.GetSchemaBindableMapper(host, predictor, _scorer);
                    ch.AssertValue(bindable);
                    var mapper     = bindable.Bind(host, testData.Schema);
                    var scorerComp = _scorer.IsGood() ? _scorer : ScoreUtils.GetScorerComponent(mapper);
                    IDataScorerTransform scorePipe = scorerComp.CreateInstance(host, testData.Data, mapper, trainData.Schema);

                    // Save per-fold model.
                    string modelFileName = ConstructPerFoldName(_outputModelFile, fold);
                    if (modelFileName != null && _loader != null)
                    {
                        using (var file = host.CreateOutputFile(modelFileName))
                        {
                            var rmd = new RoleMappedData(
                                CompositeDataLoader.ApplyTransform(host, _loader, null, null,
                                                                   (e, newSource) => ApplyTransformUtils.ApplyAllTransformsToData(e, trainData.Data, newSource)),
                                trainData.Schema.GetColumnRoleNames());
                            TrainUtils.SaveModel(host, ch, file, predictor, rmd, _cmd);
                        }
                    }

                    // Evaluate.
                    var evalComp = _evaluator;
                    if (!evalComp.IsGood())
                    {
                        evalComp = EvaluateUtils.GetEvaluatorType(ch, scorePipe.Schema);
                    }
                    var eval = evalComp.CreateInstance(host);
                    // Note that this doesn't require the provided columns to exist (because of the "opt" parameter).
                    // We don't normally expect the scorer to drop columns, but if it does, we should not require
                    // all the columns in the test pipeline to still be present.
                    var dataEval = new RoleMappedData(scorePipe, testData.Schema.GetColumnRoleNames(), opt: true);

                    var            dict        = eval.Evaluate(dataEval);
                    RoleMappedData perInstance = null;
                    if (_savePerInstance)
                    {
                        var perInst = eval.GetPerInstanceMetrics(dataEval);
                        perInstance = new RoleMappedData(perInst, dataEval.Schema.GetColumnRoleNames(), opt: true);
                    }
                    ch.Done();
                    return(new FoldResult(dict, dataEval.Schema.Schema, perInstance, trainData.Schema));
                }
            }