public void LinearLogisticRegression()
        {
            // do a set of logistic regression fits
            // make sure not only that the fit parameters are what they should be, but that their variances/covariances are as returned

            Random rng = new Random(314159);

            // define logistic parameters
            double a0 = 1.0; double b0 = -1.0 / 2.0;
            //double a0 = -0.5; double b0 = 2.0;

            // keep track of sample of returned a and b fit parameters
            BivariateSample ps = new BivariateSample();

            // also keep track of returned covariance estimates
            // since these vary slightly from fit to fit, we will average them
            double caa = 0.0;
            double cbb = 0.0;
            double cab = 0.0;

            // do 50 fits
            for (int k = 0; k < 50; k++) {

                Console.WriteLine("k={0}", k);

                // generate a synthetic data set
                BivariateSample s = new BivariateSample();
                for (int i = 0; i < 50; i++) {
                    double x = 2.0 * rng.NextDouble() - 1.0;
                    double ez = Math.Exp(a0 + b0 * x);
                    double P = ez / (1.0 + ez);
                    if (rng.NextDouble() < P) {
                        s.Add(x, 1.0);
                    } else {
                        s.Add(x, 0.0);
                    }
                }

                //if (k != 27) continue;

                // do the regression
                FitResult r = s.LinearLogisticRegression();

                // record best fit parameters
                double a = r.Parameter(0).Value;
                double b = r.Parameter(1).Value;
                ps.Add(a, b);

                Console.WriteLine("{0}, {1}", a, b);

                // record estimated covariances
                caa += r.Covariance(0, 0);
                cbb += r.Covariance(1, 1);
                cab += r.Covariance(0, 1);

            }

            caa /= ps.Count;
            cbb /= ps.Count;
            cab /= ps.Count;

            // check that mean parameter estimates are what they should be: the underlying population parameters
            Assert.IsTrue(ps.X.PopulationMean.ConfidenceInterval(0.95).ClosedContains(a0));
            Assert.IsTrue(ps.Y.PopulationMean.ConfidenceInterval(0.95).ClosedContains(b0));

            // check that parameter covarainces are what they should be: the reported covariance estimates
            Assert.IsTrue(ps.X.PopulationVariance.ConfidenceInterval(0.95).ClosedContains(caa));
            Assert.IsTrue(ps.Y.PopulationVariance.ConfidenceInterval(0.95).ClosedContains(cbb));
            Assert.IsTrue(ps.PopulationCovariance.ConfidenceInterval(0.95).ClosedContains(cab));
        }
Beispiel #2
0
        public void BivariateLogisticRegression()
        {
            double[] c = new double[] { -0.1, 1.0 };

            Random rng = new Random(1);
            UniformDistribution pointDistribution = new UniformDistribution(Interval.FromEndpoints(-4.0, 4.0));

            BivariateSample sample1 = new BivariateSample();
            MultivariateSample sample2 = new MultivariateSample(2);
            for (int k = 0; k < 1000; k++) {
                double x = pointDistribution.GetRandomValue(rng);
                double z = c[0] * x + c[1];
                double ez = Math.Exp(z);
                double p = ez / (1.0 + ez);
                double y = (rng.NextDouble() < p) ? 1.0 : 0.0;
                sample1.Add(x, y);
                sample2.Add(x, y);
            }

            Console.WriteLine(sample1.Covariance / sample1.X.Variance / sample1.Y.Mean / (1.0 - sample1.Y.Mean));
            Console.WriteLine(sample1.Covariance / sample1.X.Variance / sample1.Y.Variance);

            FitResult result1 = sample1.LinearLogisticRegression();
            FitResult result2 = sample2.TwoColumns(0, 1).LinearLogisticRegression();
            FitResult result3 = sample2.LogisticLinearRegression(1);

            for (int i = 0; i < result1.Dimension; i++) {
                Console.WriteLine("{0} {1} {2}", i, result1.Parameter(i), result3.Parameter(i) );
            }
        }