Beispiel #1
0
        SingularValueDecomposition(
            Matrix Arg
            )
        {
            transpose = (Arg.RowCount < Arg.ColumnCount);

            // Derived from LINPACK code.
            // Initialize.
            double[][] A;
            if (transpose)
            {
                // copy of internal data, independent of Arg
                A = Matrix.Transpose(Arg).GetArray();
                m = Arg.ColumnCount;
                n = Arg.RowCount;
            }
            else
            {
                A = Arg.CopyToJaggedArray();
                m = Arg.RowCount;
                n = Arg.ColumnCount;
            }

            int nu = Math.Min(m, n);

            double[]   s = new double[Math.Min(m + 1, n)];
            double[][] U = Matrix.CreateMatrixData(m, nu);
            double[][] V = Matrix.CreateMatrixData(n, n);

            double[] e     = new double[n];
            double[] work  = new double[m];
            bool     wantu = true;
            bool     wantv = true;

            // Reduce A to bidiagonal form, storing the diagonal elements
            // in s and the super-diagonal elements in e.

            int nct = Math.Min(m - 1, n);
            int nrt = Math.Max(0, Math.Min(n - 2, m));

            for (int k = 0; k < Math.Max(nct, nrt); k++)
            {
                if (k < nct)
                {
                    // Compute the transformation for the k-th column and
                    // place the k-th diagonal in s[k].
                    // Compute 2-norm of k-th column without under/overflow.
                    s[k] = 0;

                    for (int i = k; i < m; i++)
                    {
                        s[k] = Fn.Hypot(s[k], A[i][k]);
                    }

                    if (s[k] != 0.0)
                    {
                        if (A[k][k] < 0.0)
                        {
                            s[k] = -s[k];
                        }

                        for (int i = k; i < m; i++)
                        {
                            A[i][k] /= s[k];
                        }

                        A[k][k] += 1.0;
                    }

                    s[k] = -s[k];
                }

                for (int j = k + 1; j < n; j++)
                {
                    if ((k < nct) & (s[k] != 0.0))
                    {
                        // Apply the transformation.

                        double t = 0;
                        for (int i = k; i < m; i++)
                        {
                            t += A[i][k] * A[i][j];
                        }

                        t = (-t) / A[k][k];
                        for (int i = k; i < m; i++)
                        {
                            A[i][j] += t * A[i][k];
                        }
                    }

                    // Place the k-th row of A into e for the
                    // subsequent calculation of the row transformation.

                    e[j] = A[k][j];
                }

                if (wantu & (k < nct))
                {
                    // Place the transformation in U for subsequent back
                    // multiplication.

                    for (int i = k; i < m; i++)
                    {
                        U[i][k] = A[i][k];
                    }
                }

                if (k < nrt)
                {
                    // Compute the k-th row transformation and place the
                    // k-th super-diagonal in e[k].
                    // Compute 2-norm without under/overflow.
                    e[k] = 0;

                    for (int i = k + 1; i < n; i++)
                    {
                        e[k] = Fn.Hypot(e[k], e[i]);
                    }

                    if (e[k] != 0.0)
                    {
                        if (e[k + 1] < 0.0)
                        {
                            e[k] = -e[k];
                        }

                        for (int i = k + 1; i < n; i++)
                        {
                            e[i] /= e[k];
                        }

                        e[k + 1] += 1.0;
                    }

                    e[k] = -e[k];

                    if ((k + 1 < m) & (e[k] != 0.0))
                    {
                        // Apply the transformation.

                        for (int i = k + 1; i < m; i++)
                        {
                            work[i] = 0.0;
                        }

                        for (int j = k + 1; j < n; j++)
                        {
                            for (int i = k + 1; i < m; i++)
                            {
                                work[i] += e[j] * A[i][j];
                            }
                        }

                        for (int j = k + 1; j < n; j++)
                        {
                            double t = (-e[j]) / e[k + 1];
                            for (int i = k + 1; i < m; i++)
                            {
                                A[i][j] += t * work[i];
                            }
                        }
                    }

                    if (wantv)
                    {
                        // Place the transformation in V for subsequent
                        // back multiplication.

                        for (int i = k + 1; i < n; i++)
                        {
                            V[i][k] = e[i];
                        }
                    }
                }
            }

            // Set up the final bidiagonal matrix or order p.

            int p = Math.Min(n, m + 1);

            if (nct < n)
            {
                s[nct] = A[nct][nct];
            }

            if (m < p)
            {
                s[p - 1] = 0.0;
            }

            if (nrt + 1 < p)
            {
                e[nrt] = A[nrt][p - 1];
            }

            e[p - 1] = 0.0;

            // If required, generate U.

            if (wantu)
            {
                for (int j = nct; j < nu; j++)
                {
                    for (int i = 0; i < m; i++)
                    {
                        U[i][j] = 0.0;
                    }

                    U[j][j] = 1.0;
                }

                for (int k = nct - 1; k >= 0; k--)
                {
                    if (s[k] != 0.0)
                    {
                        for (int j = k + 1; j < nu; j++)
                        {
                            double t = 0;
                            for (int i = k; i < m; i++)
                            {
                                t += U[i][k] * U[i][j];
                            }

                            t = (-t) / U[k][k];
                            for (int i = k; i < m; i++)
                            {
                                U[i][j] += t * U[i][k];
                            }
                        }

                        for (int i = k; i < m; i++)
                        {
                            U[i][k] = -U[i][k];
                        }

                        U[k][k] = 1.0 + U[k][k];
                        for (int i = 0; i < k - 1; i++)
                        {
                            U[i][k] = 0.0;
                        }
                    }
                    else
                    {
                        for (int i = 0; i < m; i++)
                        {
                            U[i][k] = 0.0;
                        }

                        U[k][k] = 1.0;
                    }
                }
            }

            // If required, generate V.

            if (wantv)
            {
                for (int k = n - 1; k >= 0; k--)
                {
                    if ((k < nrt) & (e[k] != 0.0))
                    {
                        for (int j = k + 1; j < nu; j++)
                        {
                            double t = 0;
                            for (int i = k + 1; i < n; i++)
                            {
                                t += V[i][k] * V[i][j];
                            }

                            t = (-t) / V[k + 1][k];
                            for (int i = k + 1; i < n; i++)
                            {
                                V[i][j] += t * V[i][k];
                            }
                        }
                    }

                    for (int i = 0; i < n; i++)
                    {
                        V[i][k] = 0.0;
                    }

                    V[k][k] = 1.0;
                }
            }

            // Main iteration loop for the singular values.

            int    pp   = p - 1;
            int    iter = 0;
            double eps  = Number.PositiveRelativeAccuracy;

            while (p > 0)
            {
                int k, kase;

                // Here is where a test for too many iterations would go.

                // This section of the program inspects for
                // negligible elements in the s and e arrays.  On
                // completion the variables kase and k are set as follows.

                // kase = 1     if s(p) and e[k-1] are negligible and k<p
                // kase = 2     if s(k) is negligible and k<p
                // kase = 3     if e[k-1] is negligible, k<p, and
                //              s(k), ..., s(p) are not negligible (qr step).
                // kase = 4     if e(p-1) is negligible (convergence).

                for (k = p - 2; k >= -1; k--)
                {
                    if (k == -1)
                    {
                        break;
                    }

                    if (Math.Abs(e[k]) <= eps * (Math.Abs(s[k]) + Math.Abs(s[k + 1])))
                    {
                        e[k] = 0.0;
                        break;
                    }
                }

                if (k == p - 2)
                {
                    kase = 4;
                }
                else
                {
                    int ks;
                    for (ks = p - 1; ks >= k; ks--)
                    {
                        if (ks == k)
                        {
                            break;
                        }

                        double t = (ks != p ? Math.Abs(e[ks]) : 0.0) + (ks != k + 1 ? Math.Abs(e[ks - 1]) : 0.0);
                        if (Math.Abs(s[ks]) <= eps * t)
                        {
                            s[ks] = 0.0;
                            break;
                        }
                    }

                    if (ks == k)
                    {
                        kase = 3;
                    }
                    else if (ks == p - 1)
                    {
                        kase = 1;
                    }
                    else
                    {
                        kase = 2;
                        k    = ks;
                    }
                }

                k++;

                // Perform the task indicated by kase.

                switch (kase)
                {
                // Deflate negligible s(p).
                case 1:
                {
                    double f = e[p - 2];
                    e[p - 2] = 0.0;
                    for (int j = p - 2; j >= k; j--)
                    {
                        double t  = Fn.Hypot(s[j], f);
                        double cs = s[j] / t;
                        double sn = f / t;
                        s[j] = t;

                        if (j != k)
                        {
                            f        = (-sn) * e[j - 1];
                            e[j - 1] = cs * e[j - 1];
                        }

                        if (wantv)
                        {
                            for (int i = 0; i < n; i++)
                            {
                                t           = cs * V[i][j] + sn * V[i][p - 1];
                                V[i][p - 1] = (-sn) * V[i][j] + cs * V[i][p - 1];
                                V[i][j]     = t;
                            }
                        }
                    }
                }

                break;

                // Split at negligible s(k)
                case 2:
                {
                    double f = e[k - 1];
                    e[k - 1] = 0.0;
                    for (int j = k; j < p; j++)
                    {
                        double t  = Fn.Hypot(s[j], f);
                        double cs = s[j] / t;
                        double sn = f / t;
                        s[j] = t;
                        f    = (-sn) * e[j];
                        e[j] = cs * e[j];
                        if (wantu)
                        {
                            for (int i = 0; i < m; i++)
                            {
                                t           = cs * U[i][j] + sn * U[i][k - 1];
                                U[i][k - 1] = (-sn) * U[i][j] + cs * U[i][k - 1];
                                U[i][j]     = t;
                            }
                        }
                    }
                }

                break;

                // Perform one qr step.
                case 3:
                {
                    // Calculate the shift.

                    double scale = Math.Max(Math.Max(Math.Max(Math.Max(Math.Abs(s[p - 1]), Math.Abs(s[p - 2])), Math.Abs(e[p - 2])), Math.Abs(s[k])), Math.Abs(e[k]));
                    double sp    = s[p - 1] / scale;
                    double spm1  = s[p - 2] / scale;
                    double epm1  = e[p - 2] / scale;
                    double sk    = s[k] / scale;
                    double ek    = e[k] / scale;
                    double b     = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0;
                    double c     = (sp * epm1) * (sp * epm1);
                    double shift = 0.0;
                    if ((b != 0.0) | (c != 0.0))
                    {
                        shift = Math.Sqrt(b * b + c);

                        if (b < 0.0)
                        {
                            shift = -shift;
                        }

                        shift = c / (b + shift);
                    }

                    double f = (sk + sp) * (sk - sp) + shift;
                    double g = sk * ek;

                    // Chase zeros.

                    for (int j = k; j < p - 1; j++)
                    {
                        double t  = Fn.Hypot(f, g);
                        double cs = f / t;
                        double sn = g / t;

                        if (j != k)
                        {
                            e[j - 1] = t;
                        }

                        f        = cs * s[j] + sn * e[j];
                        e[j]     = cs * e[j] - sn * s[j];
                        g        = sn * s[j + 1];
                        s[j + 1] = cs * s[j + 1];

                        if (wantv)
                        {
                            for (int i = 0; i < n; i++)
                            {
                                t           = cs * V[i][j] + sn * V[i][j + 1];
                                V[i][j + 1] = (-sn) * V[i][j] + cs * V[i][j + 1];
                                V[i][j]     = t;
                            }
                        }

                        t        = Fn.Hypot(f, g);
                        cs       = f / t;
                        sn       = g / t;
                        s[j]     = t;
                        f        = cs * e[j] + sn * s[j + 1];
                        s[j + 1] = (-sn) * e[j] + cs * s[j + 1];
                        g        = sn * e[j + 1];
                        e[j + 1] = cs * e[j + 1];

                        if (wantu && (j < m - 1))
                        {
                            for (int i = 0; i < m; i++)
                            {
                                t           = cs * U[i][j] + sn * U[i][j + 1];
                                U[i][j + 1] = (-sn) * U[i][j] + cs * U[i][j + 1];
                                U[i][j]     = t;
                            }
                        }
                    }

                    e[p - 2] = f;
                    iter     = iter + 1;
                }

                break;

                // Convergence.


                case 4:
                {
                    // Make the singular values positive.

                    if (s[k] <= 0.0)
                    {
                        s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
                        if (wantv)
                        {
                            for (int i = 0; i <= pp; i++)
                            {
                                V[i][k] = -V[i][k];
                            }
                        }
                    }

                    // Order the singular values.

                    while (k < pp)
                    {
                        if (s[k] >= s[k + 1])
                        {
                            break;
                        }

                        double t = s[k];
                        s[k]     = s[k + 1];
                        s[k + 1] = t;

                        if (wantv && (k < n - 1))
                        {
                            for (int i = 0; i < n; i++)
                            {
                                t           = V[i][k + 1];
                                V[i][k + 1] = V[i][k];
                                V[i][k]     = t;
                            }
                        }

                        if (wantu && (k < m - 1))
                        {
                            for (int i = 0; i < m; i++)
                            {
                                t           = U[i][k + 1];
                                U[i][k + 1] = U[i][k];
                                U[i][k]     = t;
                            }
                        }

                        k++;
                    }

                    iter = 0;
                    p--;
                }

                break;
                }
            }

            // (vermorel) transposing the results if needed
            if (transpose)
            {
                // swaping U and V
                double[][] T = V;
                V = U;
                U = T;
            }

            _u        = new Matrix(U);
            _v        = new Matrix(V);
            _singular = new Vector(s);

            InitOnDemandComputations();
        }