Beispiel #1
0
        /// <summary>
        /// Inserts a vertex at the circumcenter of a triangle. Deletes
        /// the newly inserted vertex if it encroaches upon a segment.
        /// </summary>
        /// <param name="badtri"></param>
        private void SplitTriangle(BadTriangle badtri)
        {
            Otri               badotri = default(Otri);
            Vertex             borg, bdest, bapex;
            Point              newloc; // Location of the new vertex
            double             xi = 0, eta = 0;
            InsertVertexResult success;
            bool               errorflag;

            badotri = badtri.poortri;
            borg    = badotri.Org();
            bdest   = badotri.Dest();
            bapex   = badotri.Apex();

            // Make sure that this triangle is still the same triangle it was
            // when it was tested and determined to be of bad quality.
            // Subsequent transformations may have made it a different triangle.
            if (!Otri.IsDead(badotri.triangle) && (borg == badtri.triangorg) &&
                (bdest == badtri.triangdest) && (bapex == badtri.triangapex))
            {
                errorflag = false;
                // Create a new vertex at the triangle's circumcenter.

                // Using the original (simpler) Steiner point location method
                // for mesh refinement.
                // TODO: NewLocation doesn't work for refinement. Why? Maybe
                // reset VertexType?
                if (behavior.fixedArea || behavior.VarArea)
                {
                    newloc = Primitives.FindCircumcenter(borg, bdest, bapex, ref xi, ref eta, behavior.offconstant);
                }
                else
                {
                    newloc = newLocation.FindLocation(borg, bdest, bapex, ref xi, ref eta, true, badotri);
                }

                // Check whether the new vertex lies on a triangle vertex.
                if (((newloc.x == borg.x) && (newloc.y == borg.y)) ||
                    ((newloc.x == bdest.x) && (newloc.y == bdest.y)) ||
                    ((newloc.x == bapex.x) && (newloc.y == bapex.y)))
                {
                    if (Behavior.Verbose)
                    {
                        logger.Warning("New vertex falls on existing vertex.", "Quality.SplitTriangle()");
                        errorflag = true;
                    }
                }
                else
                {
                    // The new vertex must be in the interior, and therefore is a
                    // free vertex with a marker of zero.
                    Vertex newvertex = new Vertex(newloc.x, newloc.y, 0, mesh.nextras);
                    newvertex.type = VertexType.FreeVertex;

                    for (int i = 0; i < mesh.nextras; i++)
                    {
                        // Interpolate the vertex attributes at the circumcenter.
                        newvertex.attributes[i] = borg.attributes[i]
                                                  + xi * (bdest.attributes[i] - borg.attributes[i])
                                                  + eta * (bapex.attributes[i] - borg.attributes[i]);
                    }

                    // Ensure that the handle 'badotri' does not represent the longest
                    // edge of the triangle.  This ensures that the circumcenter must
                    // fall to the left of this edge, so point location will work.
                    // (If the angle org-apex-dest exceeds 90 degrees, then the
                    // circumcenter lies outside the org-dest edge, and eta is
                    // negative.  Roundoff error might prevent eta from being
                    // negative when it should be, so I test eta against xi.)
                    if (eta < xi)
                    {
                        badotri.LprevSelf();
                    }

                    // Insert the circumcenter, searching from the edge of the triangle,
                    // and maintain the Delaunay property of the triangulation.
                    Osub tmp = default(Osub);
                    success = mesh.InsertVertex(newvertex, ref badotri, ref tmp, true, true);

                    if (success == InsertVertexResult.Successful)
                    {
                        newvertex.hash = mesh.hash_vtx++;
                        newvertex.id   = newvertex.hash;

                        mesh.vertices.Add(newvertex.hash, newvertex);

                        if (mesh.steinerleft > 0)
                        {
                            mesh.steinerleft--;
                        }
                    }
                    else if (success == InsertVertexResult.Encroaching)
                    {
                        // If the newly inserted vertex encroaches upon a subsegment,
                        // delete the new vertex.
                        mesh.UndoVertex();
                    }
                    else if (success == InsertVertexResult.Violating)
                    {
                        // Failed to insert the new vertex, but some subsegment was
                        // marked as being encroached.
                    }
                    else
                    {   // success == DUPLICATEVERTEX
                        // Couldn't insert the new vertex because a vertex is already there.
                        if (Behavior.Verbose)
                        {
                            logger.Warning("New vertex falls on existing vertex.", "Quality.SplitTriangle()");
                            errorflag = true;
                        }
                    }
                }
                if (errorflag)
                {
                    logger.Error("The new vertex is at the circumcenter of triangle: This probably "
                                 + "means that I am trying to refine triangles to a smaller size than can be "
                                 + "accommodated by the finite precision of floating point arithmetic.",
                                 "Quality.SplitTriangle()");

                    throw new Exception("The new vertex is at the circumcenter of triangle.");
                }
            }
        }
Beispiel #2
0
        /// <summary>
        /// Test the mesh for topological consistency.
        /// </summary>
        public bool CheckMesh()
        {
            Otri   tri = default(Otri);
            Otri   oppotri = default(Otri), oppooppotri = default(Otri);
            Vertex triorg, tridest, triapex;
            Vertex oppoorg, oppodest;
            int    horrors;
            bool   saveexact;

            // Temporarily turn on exact arithmetic if it's off.
            saveexact        = Behavior.NoExact;
            Behavior.NoExact = false;
            horrors          = 0;

            // Run through the list of triangles, checking each one.
            foreach (var t in mesh.triangles.Values)
            {
                tri.triangle = t;

                // Check all three edges of the triangle.
                for (tri.orient = 0; tri.orient < 3; tri.orient++)
                {
                    triorg  = tri.Org();
                    tridest = tri.Dest();
                    if (tri.orient == 0)
                    {   // Only test for inversion once.
                        // Test if the triangle is flat or inverted.
                        triapex = tri.Apex();
                        if (Primitives.CounterClockwise(triorg, tridest, triapex) <= 0.0)
                        {
                            logger.Warning("Triangle is flat or inverted.",
                                           "Quality.CheckMesh()");
                            horrors++;
                        }
                    }
                    // Find the neighboring triangle on this edge.
                    tri.Sym(ref oppotri);
                    if (oppotri.triangle != Mesh.dummytri)
                    {
                        // Check that the triangle's neighbor knows it's a neighbor.
                        oppotri.Sym(ref oppooppotri);
                        if ((tri.triangle != oppooppotri.triangle) || (tri.orient != oppooppotri.orient))
                        {
                            if (tri.triangle == oppooppotri.triangle)
                            {
                                logger.Warning("Asymmetric triangle-triangle bond: (Right triangle, wrong orientation)",
                                               "Quality.CheckMesh()");
                            }

                            horrors++;
                        }
                        // Check that both triangles agree on the identities
                        // of their shared vertices.
                        oppoorg  = oppotri.Org();
                        oppodest = oppotri.Dest();
                        if ((triorg != oppodest) || (tridest != oppoorg))
                        {
                            logger.Warning("Mismatched edge coordinates between two triangles.",
                                           "Quality.CheckMesh()");

                            horrors++;
                        }
                    }
                }
            }

            // Check for unconnected vertices
            mesh.MakeVertexMap();
            foreach (var v in mesh.vertices.Values)
            {
                if (v.tri.triangle == null)
                {
                    logger.Warning("Vertex (ID " + v.id + ") not connected to mesh (duplicate input vertex?)",
                                   "Quality.CheckMesh()");
                }
            }

            if (horrors == 0) // && Behavior.Verbose
            {
                logger.Info("Mesh topology appears to be consistent.");
            }

            // Restore the status of exact arithmetic.
            Behavior.NoExact = saveexact;

            return(horrors == 0);
        }
Beispiel #3
0
        /// <summary>
        /// Ensure that the mesh is (constrained) Delaunay.
        /// </summary>
        public bool CheckDelaunay()
        {
            Otri   loop = default(Otri);
            Otri   oppotri = default(Otri);
            Osub   opposubseg = default(Osub);
            Vertex triorg, tridest, triapex;
            Vertex oppoapex;
            bool   shouldbedelaunay;
            int    horrors;
            bool   saveexact;

            // Temporarily turn on exact arithmetic if it's off.
            saveexact        = Behavior.NoExact;
            Behavior.NoExact = false;
            horrors          = 0;

            // Run through the list of triangles, checking each one.
            foreach (var tri in mesh.triangles.Values)
            {
                loop.triangle = tri;

                // Check all three edges of the triangle.
                for (loop.orient = 0; loop.orient < 3;
                     loop.orient++)
                {
                    triorg  = loop.Org();
                    tridest = loop.Dest();
                    triapex = loop.Apex();
                    loop.Sym(ref oppotri);
                    oppoapex = oppotri.Apex();
                    // Only test that the edge is locally Delaunay if there is an
                    // adjoining triangle whose pointer is larger (to ensure that
                    // each pair isn't tested twice).
                    shouldbedelaunay = (oppotri.triangle != Mesh.dummytri) &&
                                       !Otri.IsDead(oppotri.triangle) && loop.triangle.id < oppotri.triangle.id &&
                                       (triorg != mesh.infvertex1) && (triorg != mesh.infvertex2) &&
                                       (triorg != mesh.infvertex3) &&
                                       (tridest != mesh.infvertex1) && (tridest != mesh.infvertex2) &&
                                       (tridest != mesh.infvertex3) &&
                                       (triapex != mesh.infvertex1) && (triapex != mesh.infvertex2) &&
                                       (triapex != mesh.infvertex3) &&
                                       (oppoapex != mesh.infvertex1) && (oppoapex != mesh.infvertex2) &&
                                       (oppoapex != mesh.infvertex3);
                    if (mesh.checksegments && shouldbedelaunay)
                    {
                        // If a subsegment separates the triangles, then the edge is
                        // constrained, so no local Delaunay test should be done.
                        loop.SegPivot(ref opposubseg);
                        if (opposubseg.seg != Mesh.dummysub)
                        {
                            shouldbedelaunay = false;
                        }
                    }
                    if (shouldbedelaunay)
                    {
                        if (Primitives.NonRegular(triorg, tridest, triapex, oppoapex) > 0.0)
                        {
                            logger.Warning(String.Format("Non-regular pair of triangles found (IDs {0}/{1}).",
                                                         loop.triangle.id, oppotri.triangle.id), "Quality.CheckDelaunay()");
                            horrors++;
                        }
                    }
                }
            }

            if (horrors == 0) // && Behavior.Verbose
            {
                logger.Info("Mesh is Delaunay.");
            }

            // Restore the status of exact arithmetic.
            Behavior.NoExact = saveexact;

            return(horrors == 0);
        }
Beispiel #4
0
        /// <summary>
        /// Split all the encroached subsegments.
        /// </summary>
        /// <param name="triflaws">A flag that specifies whether one should take
        /// note of new bad triangles that result from inserting vertices to repair
        /// encroached subsegments.</param>
        /// <remarks>
        /// Each encroached subsegment is repaired by splitting it - inserting a
        /// vertex at or near its midpoint.  Newly inserted vertices may encroach
        /// upon other subsegments; these are also repaired.
        /// </remarks>
        private void SplitEncSegs(bool triflaws)
        {
            Otri               enctri     = default(Otri);
            Otri               testtri    = default(Otri);
            Osub               testsh     = default(Osub);
            Osub               currentenc = default(Osub);
            BadSubseg          seg;
            Vertex             eorg, edest, eapex;
            Vertex             newvertex;
            InsertVertexResult success;
            double             segmentlength, nearestpoweroftwo;
            double             split;
            double             multiplier, divisor;
            bool               acuteorg, acuteorg2, acutedest, acutedest2;

            // Note that steinerleft == -1 if an unlimited number
            // of Steiner points is allowed.
            while (badsubsegs.Count > 0)
            {
                if (mesh.steinerleft == 0)
                {
                    break;
                }

                seg = badsubsegs.Dequeue();

                currentenc = seg.encsubseg;
                eorg       = currentenc.Org();
                edest      = currentenc.Dest();
                // Make sure that this segment is still the same segment it was
                // when it was determined to be encroached.  If the segment was
                // enqueued multiple times (because several newly inserted
                // vertices encroached it), it may have already been split.
                if (!Osub.IsDead(currentenc.seg) && (eorg == seg.subsegorg) && (edest == seg.subsegdest))
                {
                    // To decide where to split a segment, we need to know if the
                    // segment shares an endpoint with an adjacent segment.
                    // The concern is that, if we simply split every encroached
                    // segment in its center, two adjacent segments with a small
                    // angle between them might lead to an infinite loop; each
                    // vertex added to split one segment will encroach upon the
                    // other segment, which must then be split with a vertex that
                    // will encroach upon the first segment, and so on forever.
                    // To avoid this, imagine a set of concentric circles, whose
                    // radii are powers of two, about each segment endpoint.
                    // These concentric circles determine where the segment is
                    // split. (If both endpoints are shared with adjacent
                    // segments, split the segment in the middle, and apply the
                    // concentric circles for later splittings.)

                    // Is the origin shared with another segment?
                    currentenc.TriPivot(ref enctri);
                    enctri.Lnext(ref testtri);
                    testtri.SegPivot(ref testsh);
                    acuteorg = testsh.seg != Mesh.dummysub;
                    // Is the destination shared with another segment?
                    testtri.LnextSelf();
                    testtri.SegPivot(ref testsh);
                    acutedest = testsh.seg != Mesh.dummysub;

                    // If we're using Chew's algorithm (rather than Ruppert's)
                    // to define encroachment, delete free vertices from the
                    // subsegment's diametral circle.
                    if (!behavior.ConformingDelaunay && !acuteorg && !acutedest)
                    {
                        eapex = enctri.Apex();
                        while ((eapex.type == VertexType.FreeVertex) &&
                               ((eorg.x - eapex.x) * (edest.x - eapex.x) +
                                (eorg.y - eapex.y) * (edest.y - eapex.y) < 0.0))
                        {
                            mesh.DeleteVertex(ref testtri);
                            currentenc.TriPivot(ref enctri);
                            eapex = enctri.Apex();
                            enctri.Lprev(ref testtri);
                        }
                    }

                    // Now, check the other side of the segment, if there's a triangle there.
                    enctri.Sym(ref testtri);
                    if (testtri.triangle != Mesh.dummytri)
                    {
                        // Is the destination shared with another segment?
                        testtri.LnextSelf();
                        testtri.SegPivot(ref testsh);
                        acutedest2 = testsh.seg != Mesh.dummysub;
                        acutedest  = acutedest || acutedest2;
                        // Is the origin shared with another segment?
                        testtri.LnextSelf();
                        testtri.SegPivot(ref testsh);
                        acuteorg2 = testsh.seg != Mesh.dummysub;
                        acuteorg  = acuteorg || acuteorg2;

                        // Delete free vertices from the subsegment's diametral circle.
                        if (!behavior.ConformingDelaunay && !acuteorg2 && !acutedest2)
                        {
                            eapex = testtri.Org();
                            while ((eapex.type == VertexType.FreeVertex) &&
                                   ((eorg.x - eapex.x) * (edest.x - eapex.x) +
                                    (eorg.y - eapex.y) * (edest.y - eapex.y) < 0.0))
                            {
                                mesh.DeleteVertex(ref testtri);
                                enctri.Sym(ref testtri);
                                eapex = testtri.Apex();
                                testtri.LprevSelf();
                            }
                        }
                    }

                    // Use the concentric circles if exactly one endpoint is shared
                    // with another adjacent segment.
                    if (acuteorg || acutedest)
                    {
                        segmentlength = Math.Sqrt((edest.x - eorg.x) * (edest.x - eorg.x) +
                                                  (edest.y - eorg.y) * (edest.y - eorg.y));
                        // Find the power of two that most evenly splits the segment.
                        // The worst case is a 2:1 ratio between subsegment lengths.
                        nearestpoweroftwo = 1.0;
                        while (segmentlength > 3.0 * nearestpoweroftwo)
                        {
                            nearestpoweroftwo *= 2.0;
                        }
                        while (segmentlength < 1.5 * nearestpoweroftwo)
                        {
                            nearestpoweroftwo *= 0.5;
                        }
                        // Where do we split the segment?
                        split = nearestpoweroftwo / segmentlength;
                        if (acutedest)
                        {
                            split = 1.0 - split;
                        }
                    }
                    else
                    {
                        // If we're not worried about adjacent segments, split
                        // this segment in the middle.
                        split = 0.5;
                    }

                    // Create the new vertex (interpolate coordinates).
                    newvertex = new Vertex(
                        eorg.x + split * (edest.x - eorg.x),
                        eorg.y + split * (edest.y - eorg.y),
                        currentenc.Mark(),
                        mesh.nextras);

                    newvertex.type = VertexType.SegmentVertex;

                    newvertex.hash = mesh.hash_vtx++;
                    newvertex.id   = newvertex.hash;

                    mesh.vertices.Add(newvertex.hash, newvertex);

                    // Interpolate attributes.
                    for (int i = 0; i < mesh.nextras; i++)
                    {
                        newvertex.attributes[i] = eorg.attributes[i]
                                                  + split * (edest.attributes[i] - eorg.attributes[i]);
                    }

                    if (!Behavior.NoExact)
                    {
                        // Roundoff in the above calculation may yield a 'newvertex'
                        // that is not precisely collinear with 'eorg' and 'edest'.
                        // Improve collinearity by one step of iterative refinement.
                        multiplier = Primitives.CounterClockwise(eorg, edest, newvertex);
                        divisor    = ((eorg.x - edest.x) * (eorg.x - edest.x) +
                                      (eorg.y - edest.y) * (eorg.y - edest.y));
                        if ((multiplier != 0.0) && (divisor != 0.0))
                        {
                            multiplier = multiplier / divisor;
                            // Watch out for NANs.
                            if (!double.IsNaN(multiplier))
                            {
                                newvertex.x += multiplier * (edest.y - eorg.y);
                                newvertex.y += multiplier * (eorg.x - edest.x);
                            }
                        }
                    }

                    // Check whether the new vertex lies on an endpoint.
                    if (((newvertex.x == eorg.x) && (newvertex.y == eorg.y)) ||
                        ((newvertex.x == edest.x) && (newvertex.y == edest.y)))
                    {
                        logger.Error("Ran out of precision: I attempted to split a"
                                     + " segment to a smaller size than can be accommodated by"
                                     + " the finite precision of floating point arithmetic.",
                                     "Quality.SplitEncSegs()");

                        throw new Exception("Ran out of precision");
                    }
                    // Insert the splitting vertex.  This should always succeed.
                    success = mesh.InsertVertex(newvertex, ref enctri, ref currentenc, true, triflaws);
                    if ((success != InsertVertexResult.Successful) && (success != InsertVertexResult.Encroaching))
                    {
                        logger.Error("Failure to split a segment.", "Quality.SplitEncSegs()");
                        throw new Exception("Failure to split a segment.");
                    }
                    if (mesh.steinerleft > 0)
                    {
                        mesh.steinerleft--;
                    }
                    // Check the two new subsegments to see if they're encroached.
                    CheckSeg4Encroach(ref currentenc);
                    currentenc.NextSelf();
                    CheckSeg4Encroach(ref currentenc);
                }

                // Set subsegment's origin to NULL. This makes it possible to detect dead
                // badsubsegs when traversing the list of all badsubsegs.
                seg.subsegorg = null;
            }
        }
Beispiel #5
0
        /// <summary>
        /// Find the holes and infect them. Find the area constraints and infect
        /// them. Infect the convex hull. Spread the infection and kill triangles.
        /// Spread the area constraints.
        /// </summary>
        public void CarveHoles()
        {
            Otri         searchtri = default(Otri);
            Vertex       searchorg, searchdest;
            LocateResult intersect;

            Triangle[] regionTris = null;

            if (!mesh.behavior.Convex)
            {
                // Mark as infected any unprotected triangles on the boundary.
                // This is one way by which concavities are created.
                InfectHull();
            }

            if (!mesh.behavior.NoHoles)
            {
                // Infect each triangle in which a hole lies.
                foreach (var hole in mesh.holes)
                {
                    // Ignore holes that aren't within the bounds of the mesh.
                    if (mesh.bounds.Contains(hole))
                    {
                        // Start searching from some triangle on the outer boundary.
                        searchtri.triangle = Mesh.dummytri;
                        searchtri.orient   = 0;
                        searchtri.SymSelf();
                        // Ensure that the hole is to the left of this boundary edge;
                        // otherwise, locate() will falsely report that the hole
                        // falls within the starting triangle.
                        searchorg  = searchtri.Org();
                        searchdest = searchtri.Dest();
                        if (Primitives.CounterClockwise(searchorg, searchdest, hole) > 0.0)
                        {
                            // Find a triangle that contains the hole.
                            intersect = mesh.locator.Locate(hole, ref searchtri);
                            if ((intersect != LocateResult.Outside) && (!searchtri.IsInfected()))
                            {
                                // Infect the triangle. This is done by marking the triangle
                                // as infected and including the triangle in the virus pool.
                                searchtri.Infect();
                                viri.Add(searchtri.triangle);
                            }
                        }
                    }
                }
            }

            // Now, we have to find all the regions BEFORE we carve the holes, because locate() won't
            // work when the triangulation is no longer convex. (Incidentally, this is the reason why
            // regional attributes and area constraints can't be used when refining a preexisting mesh,
            // which might not be convex; they can only be used with a freshly triangulated PSLG.)
            if (mesh.regions.Count > 0)
            {
                int i = 0;

                regionTris = new Triangle[mesh.regions.Count];

                // Find the starting triangle for each region.
                foreach (var region in mesh.regions)
                {
                    regionTris[i] = Mesh.dummytri;
                    // Ignore region points that aren't within the bounds of the mesh.
                    if (mesh.bounds.Contains(region.point))
                    {
                        // Start searching from some triangle on the outer boundary.
                        searchtri.triangle = Mesh.dummytri;
                        searchtri.orient   = 0;
                        searchtri.SymSelf();
                        // Ensure that the region point is to the left of this boundary
                        // edge; otherwise, locate() will falsely report that the
                        // region point falls within the starting triangle.
                        searchorg  = searchtri.Org();
                        searchdest = searchtri.Dest();
                        if (Primitives.CounterClockwise(searchorg, searchdest, region.point) > 0.0)
                        {
                            // Find a triangle that contains the region point.
                            intersect = mesh.locator.Locate(region.point, ref searchtri);
                            if ((intersect != LocateResult.Outside) && (!searchtri.IsInfected()))
                            {
                                // Record the triangle for processing after the
                                // holes have been carved.
                                regionTris[i]        = searchtri.triangle;
                                regionTris[i].region = region.id;
                            }
                        }
                    }

                    i++;
                }
            }

            if (viri.Count > 0)
            {
                // Carve the holes and concavities.
                Plague();
            }

            if (regionTris != null)
            {
                var iterator = new RegionIterator(mesh);

                for (int i = 0; i < regionTris.Length; i++)
                {
                    if (regionTris[i] != Mesh.dummytri)
                    {
                        // Make sure the triangle under consideration still exists.
                        // It may have been eaten by the virus.
                        if (!Otri.IsDead(regionTris[i]))
                        {
                            // Apply one region's attribute and/or area constraint.
                            iterator.Process(regionTris[i]);
                        }
                    }
                }
            }

            // Free up memory (virus pool should be empty anyway).
            viri.Clear();
        }