Beispiel #1
0
                public Key(EEType* pSourceType, EEType* pTargetType, AssignmentVariation variation)
                {
                    Debug.Assert((((long)pSourceType) & 3) == 0, "misaligned EEType!");
                    Debug.Assert(((uint)variation) <= 3, "variation enum has an unexpectedly large value!");

                    _sourceTypeAndVariation = (IntPtr)(((byte*)pSourceType) + ((int)variation));
                    _targetType = (IntPtr)pTargetType;
                }
Beispiel #2
0
            public unsafe static bool AreTypesAssignableInternal(EEType* pSourceType, EEType* pTargetType, AssignmentVariation variation)
            {
                // Important special case -- it breaks infinite recursion in CastCache itself!
                if (pSourceType == pTargetType)
                    return true;

                Key key = new Key(pSourceType, pTargetType, variation);
                Entry entry = LookupInCache(s_cache, ref key);
                if (entry == null)
                    return CacheMiss(ref key);

                return entry.Result;
            }
Beispiel #3
0
        private static unsafe int GetInstanceGCDescSize(TypeBuilderState state, EEType* pTemplateEEType, bool isValueType, bool isArray)
        {
            var gcBitfield = state.InstanceGCLayout;
            if (isArray)
            {
                if (state.IsArrayOfReferenceTypes)
                {
                    // Reference type arrays have a GC desc the size of 3 pointers
                    return 3 * sizeof(IntPtr);
                }
                else
                {
                    int series = 0;
                    if (gcBitfield != null)
                        series = CreateArrayGCDesc(gcBitfield, 1, true, null);

                    return series > 0 ? (series + 2) * IntPtr.Size : 0;
                }
            }
            else if (gcBitfield != null)
            {
                int series = CreateGCDesc(gcBitfield, 0, isValueType, false, null);
                return series > 0 ? (series * 2 + 1) * IntPtr.Size : 0;
            }
            else if (pTemplateEEType != null)
            {
                return RuntimeAugments.GetGCDescSize(pTemplateEEType->ToRuntimeTypeHandle());
            }
            else
            {
                return 0;
            }
        }
Beispiel #4
0
 private static void CreateInstanceGCDesc(TypeBuilderState state, EEType* pTemplateEEType, EEType* pEEType, int baseSize, int cbGCDesc, bool isValueType, bool isArray, bool isSzArray, int arrayRank)
 {
     var gcBitfield = state.InstanceGCLayout;
     if (isArray)
     {
         if (cbGCDesc != 0)
         {
             pEEType->HasGCPointers = true;
             if (state.IsArrayOfReferenceTypes)
             {
                 IntPtr* gcDescStart = (IntPtr*)((byte*)pEEType - cbGCDesc);
                 gcDescStart[0] = new IntPtr(-baseSize);
                 gcDescStart[1] = new IntPtr(baseSize - sizeof(IntPtr));
                 gcDescStart[2] = new IntPtr(1);
             }
             else
             {
                 CreateArrayGCDesc(gcBitfield, arrayRank, isSzArray, ((void**)pEEType) - 1);
             }
         }
         else
         {
             pEEType->HasGCPointers = false;
         }
     }
     else if (gcBitfield != null)
     {
         if (cbGCDesc != 0)
         {
             pEEType->HasGCPointers = true;
             CreateGCDesc(gcBitfield, baseSize, isValueType, false, ((void**)pEEType) - 1);
         }
         else
         {
             pEEType->HasGCPointers = false;
         }
     }
     else if (pTemplateEEType != null)
     {
         Buffer.MemoryCopy((byte*)pTemplateEEType - cbGCDesc, (byte*)pEEType - cbGCDesc, cbGCDesc, cbGCDesc);
         pEEType->HasGCPointers = pTemplateEEType->HasGCPointers;
     }
     else
     {
         pEEType->HasGCPointers = false;
     }
 }
Beispiel #5
0
        private static void CreateEETypeWorker(EEType* pTemplateEEType, UInt32 hashCodeOfNewType,
            int arity, bool requireVtableSlotMapping, TypeBuilderState state)
        {
            bool successful = false;
            IntPtr eeTypePtrPlusGCDesc = IntPtr.Zero;
            IntPtr dynamicDispatchMapPtr = IntPtr.Zero;
            DynamicModule* dynamicModulePtr = null;

            try
            {
                Debug.Assert((pTemplateEEType != null) || (state.TypeBeingBuilt as MetadataType != null));

                // In some situations involving arrays we can find as a template a dynamically generated type.
                // In that case, the correct template would be the template used to create the dynamic type in the first
                // place.
                if (pTemplateEEType != null && pTemplateEEType->IsDynamicType)
                {
                    pTemplateEEType = pTemplateEEType->DynamicTemplateType;
                }

                ModuleInfo moduleInfo = TypeLoaderEnvironment.GetModuleInfoForType(state.TypeBeingBuilt);
                dynamicModulePtr = moduleInfo.DynamicModulePtr;
                Debug.Assert(dynamicModulePtr != null);

                bool requiresDynamicDispatchMap = requireVtableSlotMapping && (pTemplateEEType != null) && pTemplateEEType->HasDispatchMap;

                uint valueTypeFieldPaddingEncoded = 0;
                int baseSize = 0;

                bool isValueType;
                bool hasFinalizer;
                bool isNullable;
                bool isArray;
                bool isGeneric;
                ushort componentSize = 0;
                ushort flags;
                ushort runtimeInterfacesLength = 0;
                bool isGenericEETypeDef = false;

                if (state.RuntimeInterfaces != null)
                {
                    runtimeInterfacesLength = checked((ushort)state.RuntimeInterfaces.Length);
                }

                if (pTemplateEEType != null)
                {
                    valueTypeFieldPaddingEncoded = EEType.ComputeValueTypeFieldPaddingFieldValue(
                        pTemplateEEType->ValueTypeFieldPadding, 
                        (uint)pTemplateEEType->FieldAlignmentRequirement);
                    baseSize = (int)pTemplateEEType->BaseSize;
                    isValueType = pTemplateEEType->IsValueType;
                    hasFinalizer = pTemplateEEType->IsFinalizable;
                    isNullable = pTemplateEEType->IsNullable;
                    componentSize = pTemplateEEType->ComponentSize;
                    flags = pTemplateEEType->Flags;
                    isArray = pTemplateEEType->IsArray;
                    isGeneric = pTemplateEEType->IsGeneric;
                    Debug.Assert(pTemplateEEType->NumInterfaces == runtimeInterfacesLength);
                }
                else if (state.TypeBeingBuilt.IsGenericDefinition)
                {
                    flags = (ushort)EETypeKind.GenericTypeDefEEType;
                    isValueType = state.TypeBeingBuilt.IsValueType;
                    if (isValueType)
                        flags |= (ushort)EETypeFlags.ValueTypeFlag;

                    if (state.TypeBeingBuilt.IsInterface)
                        flags |= (ushort)EETypeFlags.IsInterfaceFlag;
                    hasFinalizer = false;
                    isArray = false;
                    isNullable = false;
                    isGeneric = false;
                    isGenericEETypeDef = true;
                    componentSize = checked((ushort)state.TypeBeingBuilt.Instantiation.Length);
                    baseSize = 0;
                }
                else
                {
                    isValueType = state.TypeBeingBuilt.IsValueType;
                    hasFinalizer = state.TypeBeingBuilt.HasFinalizer;
                    isNullable = state.TypeBeingBuilt.GetTypeDefinition().IsNullable;
                    flags = EETypeBuilderHelpers.ComputeFlags(state.TypeBeingBuilt);
                    isArray = false;
                    isGeneric = state.TypeBeingBuilt.HasInstantiation;

                    if (state.TypeBeingBuilt.HasVariance)
                    {
                        state.GenericVarianceFlags = new int[state.TypeBeingBuilt.Instantiation.Length];
                        int i = 0;

                        foreach (GenericParameterDesc gpd in state.TypeBeingBuilt.GetTypeDefinition().Instantiation)
                        {
                            state.GenericVarianceFlags[i] = (int)gpd.Variance;
                            i++;
                        }
                        Debug.Assert(i == state.GenericVarianceFlags.Length);
                    }
                }

                // TODO! Change to if template is Universal or non-Existent
                if (state.TypeSize.HasValue)
                {
                    baseSize = state.TypeSize.Value;

                    int baseSizeBeforeAlignment = baseSize;

                    baseSize = MemoryHelpers.AlignUp(baseSize, IntPtr.Size);

                    if (isValueType)
                    {
                        // Compute the valuetype padding size based on size before adding the object type pointer field to the size
                        uint cbValueTypeFieldPadding = (uint)(baseSize - baseSizeBeforeAlignment);

                        // Add Object type pointer field to base size
                        baseSize += IntPtr.Size;

                        valueTypeFieldPaddingEncoded = (uint)EEType.ComputeValueTypeFieldPaddingFieldValue(cbValueTypeFieldPadding, (uint)state.FieldAlignment.Value);
                    }

                    // Minimum base size is 3 pointers, and requires us to bump the size of an empty class type
                    if (baseSize <= IntPtr.Size)
                    {
                        // ValueTypes should already have had their size bumped up by the normal type layout process
                        Debug.Assert(!isValueType);
                        baseSize += IntPtr.Size;
                    }

                    // Add sync block skew
                    baseSize += IntPtr.Size;

                    // Minimum basesize is 3 pointers
                    Debug.Assert(baseSize >= (IntPtr.Size * 3));
                }

                // Optional fields encoding
                int cbOptionalFieldsSize;
                OptionalFieldsRuntimeBuilder optionalFields;
                {
                    optionalFields = new OptionalFieldsRuntimeBuilder(pTemplateEEType != null ? pTemplateEEType->OptionalFieldsPtr : null);

                    UInt32 rareFlags = optionalFields.GetFieldValue(EETypeOptionalFieldTag.RareFlags, 0);
                    rareFlags |= (uint)EETypeRareFlags.IsDynamicTypeFlag;          // Set the IsDynamicTypeFlag
                    rareFlags &= ~(uint)EETypeRareFlags.NullableTypeViaIATFlag;    // Remove the NullableTypeViaIATFlag flag
                    rareFlags &= ~(uint)EETypeRareFlags.HasSealedVTableEntriesFlag;// Remove the HasSealedVTableEntriesFlag
                                                                                   // we'll set IsDynamicTypeWithSealedVTableEntriesFlag instead

                    // Set the IsDynamicTypeWithSealedVTableEntriesFlag if needed
                    if (state.NumSealedVTableEntries > 0)
                        rareFlags |= (uint)EETypeRareFlags.IsDynamicTypeWithSealedVTableEntriesFlag;

                    if (requiresDynamicDispatchMap)
                        rareFlags |= (uint)EETypeRareFlags.HasDynamicallyAllocatedDispatchMapFlag;

                    if (state.NonGcDataSize != 0)
                        rareFlags |= (uint)EETypeRareFlags.IsDynamicTypeWithNonGcStatics;

                    if (state.GcDataSize != 0)
                        rareFlags |= (uint)EETypeRareFlags.IsDynamicTypeWithGcStatics;

                    if (state.ThreadDataSize != 0)
                        rareFlags |= (uint)EETypeRareFlags.IsDynamicTypeWithThreadStatics;

#if ARM
                    if (state.FieldAlignment == 8)
                        rareFlags |= (uint)EETypeRareFlags.RequiresAlign8Flag;
                    else
                        rareFlags &= ~(uint)EETypeRareFlags.RequiresAlign8Flag;

                    if (state.IsHFA)
                        rareFlags |= (uint)EETypeRareFlags.IsHFAFlag;
                    else
                        rareFlags &= ~(uint)EETypeRareFlags.IsHFAFlag;
#endif
                    if (state.HasStaticConstructor)
                        rareFlags |= (uint)EETypeRareFlags.HasCctorFlag;
                    else
                        rareFlags &= ~(uint)EETypeRareFlags.HasCctorFlag;

                    rareFlags |= (uint)EETypeRareFlags.HasDynamicModuleFlag;

                    optionalFields.SetFieldValue(EETypeOptionalFieldTag.RareFlags, rareFlags);

                    // Dispatch map is fetched either from template type, or from the dynamically allocated DispatchMap field
                    optionalFields.ClearField(EETypeOptionalFieldTag.DispatchMap);

                    optionalFields.ClearField(EETypeOptionalFieldTag.ValueTypeFieldPadding);

                    if (valueTypeFieldPaddingEncoded != 0)
                        optionalFields.SetFieldValue(EETypeOptionalFieldTag.ValueTypeFieldPadding, valueTypeFieldPaddingEncoded);

                    // Compute size of optional fields encoding
                    cbOptionalFieldsSize = optionalFields.Encode();
                    Debug.Assert(cbOptionalFieldsSize > 0);
                }

                // Note: The number of vtable slots on the EEType to create is not necessary equal to the number of
                // vtable slots on the template type for universal generics (see ComputeVTableLayout)
                ushort numVtableSlots = state.NumVTableSlots;

                // Compute the EEType size and allocate it
                EEType* pEEType;
                {
                    // In order to get the size of the EEType to allocate we need the following information 
                    // 1) The number of VTable slots (from the TypeBuilderState)
                    // 2) The number of Interfaces (from the template)
                    // 3) Whether or not there is a finalizer (from the template)
                    // 4) Optional fields size
                    // 5) Whether or not the type is nullable (from the template)
                    // 6) Whether or not the type has sealed virtuals (from the TypeBuilderState)
                    int cbEEType = (int)EEType.GetSizeofEEType(
                        numVtableSlots,
                        runtimeInterfacesLength,
                        hasFinalizer,
                        true,
                        isNullable,
                        state.NumSealedVTableEntries > 0,
                        isGeneric,
                        state.NonGcDataSize != 0,
                        state.GcDataSize != 0,
                        state.ThreadDataSize != 0);

                    // Dynamic types have an extra pointer-sized field that contains a pointer to their template type
                    cbEEType += IntPtr.Size;

                    // Check if we need another pointer sized field for a dynamic DispatchMap
                    cbEEType += (requiresDynamicDispatchMap ? IntPtr.Size : 0);

                    // Add another pointer sized field for a DynamicModule
                    cbEEType += IntPtr.Size;

                    int cbGCDesc = GetInstanceGCDescSize(state, pTemplateEEType, isValueType, isArray);
                    int cbGCDescAligned = MemoryHelpers.AlignUp(cbGCDesc, IntPtr.Size);

                    // Allocate enough space for the EEType + gcDescSize
                    eeTypePtrPlusGCDesc = MemoryHelpers.AllocateMemory(cbGCDescAligned + cbEEType + cbOptionalFieldsSize);

                    // Get the EEType pointer, and the template EEType pointer
                    pEEType = (EEType*)(eeTypePtrPlusGCDesc + cbGCDescAligned);
                    state.HalfBakedRuntimeTypeHandle = pEEType->ToRuntimeTypeHandle();

                    // Set basic EEType fields
                    pEEType->ComponentSize = componentSize;
                    pEEType->Flags = flags;
                    pEEType->BaseSize = (uint)baseSize;
                    pEEType->NumVtableSlots = numVtableSlots;
                    pEEType->NumInterfaces = runtimeInterfacesLength;
                    pEEType->HashCode = hashCodeOfNewType;

                    // Write the GCDesc
                    bool isSzArray = isArray ? state.ArrayRank < 1 : false;
                    int arrayRank = isArray ? state.ArrayRank.Value : 0;
                    CreateInstanceGCDesc(state, pTemplateEEType, pEEType, baseSize, cbGCDesc, isValueType, isArray, isSzArray, arrayRank);
                    Debug.Assert(pEEType->HasGCPointers == (cbGCDesc != 0));

#if GENERICS_FORCE_USG
                    if (state.NonUniversalTemplateType != null)
                    {
                        Debug.Assert(state.NonUniversalInstanceGCDescSize == cbGCDesc, "Non-universal instance GCDesc size not matching with universal GCDesc size!");
                        Debug.Assert(cbGCDesc == 0 || pEEType->HasGCPointers);

                        // The TestGCDescsForEquality helper will compare 2 GCDescs for equality, 4 bytes at a time (GCDesc contents treated as integers), and will read the 
                        // GCDesc data in *reverse* order for instance GCDescs (subtracts 4 from the pointer values at each iteration).
                        //    - For the first GCDesc, we use (pEEType - 4) to point to the first 4-byte integer directly preceeding the EEType
                        //    - For the second GCDesc, given that the state.NonUniversalInstanceGCDesc already points to the first byte preceeding the template EEType, we 
                        //      subtract 3 to point to the first 4-byte integer directly preceeding the template EEtype
                        TestGCDescsForEquality(new IntPtr((byte*)pEEType - 4), state.NonUniversalInstanceGCDesc - 3, cbGCDesc, true);
                    }
#endif

                    // Copy the encoded optional fields buffer to the newly allocated memory, and update the OptionalFields field on the EEType
                    // It is important to set the optional fields first on the newly created EEType, because all other 'setters' 
                    // will assert that the type is dynamic, just to make sure we are not making any changes to statically compiled types
                    pEEType->OptionalFieldsPtr = (byte*)pEEType + cbEEType;
                    optionalFields.WriteToEEType(pEEType, cbOptionalFieldsSize);

#if CORERT
                    pEEType->PointerToTypeManager = PermanentAllocatedMemoryBlobs.GetPointerToIntPtr(moduleInfo.Handle);
#endif
                    pEEType->DynamicModule = dynamicModulePtr;

                    // Copy VTable entries from template type
                    int numSlotsFilled = 0;
                    IntPtr* pVtable = (IntPtr*)((byte*)pEEType + sizeof(EEType));
                    if (pTemplateEEType != null)
                    {
                        IntPtr* pTemplateVtable = (IntPtr*)((byte*)pTemplateEEType + sizeof(EEType));
                        for (int i = 0; i < pTemplateEEType->NumVtableSlots; i++)
                        {
                            int vtableSlotInDynamicType = requireVtableSlotMapping ? state.VTableSlotsMapping.GetVTableSlotInTargetType(i) : i;
                            if (vtableSlotInDynamicType != -1)
                            {
                                Debug.Assert(vtableSlotInDynamicType < numVtableSlots);

                                IntPtr dictionaryPtrValue;
                                if (requireVtableSlotMapping && state.VTableSlotsMapping.IsDictionarySlot(i, out dictionaryPtrValue))
                                {
                                    // This must be the dictionary pointer value of one of the base types of the 
                                    // current universal generic type being constructed.
                                    pVtable[vtableSlotInDynamicType] = dictionaryPtrValue;

                                    // Assert that the current template vtable slot is also a NULL value since all 
                                    // universal generic template types have NULL dictionary slot values in their vtables
                                    Debug.Assert(pTemplateVtable[i] == IntPtr.Zero);
                                }
                                else
                                {
                                    pVtable[vtableSlotInDynamicType] = pTemplateVtable[i];
                                }
                                numSlotsFilled++;
                            }
                        }
                    }
                    else if (isGenericEETypeDef)
                    {
                        // If creating a Generic Type Definition
                        Debug.Assert(pEEType->NumVtableSlots == 0);
                    }
                    else
                    {
#if SUPPORTS_NATIVE_METADATA_TYPE_LOADING
                        // Dynamically loaded type

                        // Fill the vtable with vtable resolution thunks in all slots except for
                        // the dictionary slots, which should be filled with dictionary pointers if those
                        // dictionaries are already published.

                        TypeDesc nextTypeToExamineForDictionarySlot = state.TypeBeingBuilt;
                        TypeDesc typeWithDictionary;
                        int nextDictionarySlot = GetMostDerivedDictionarySlot(ref nextTypeToExamineForDictionarySlot, out typeWithDictionary);

                        for (int iSlot = pEEType->NumVtableSlots - 1; iSlot >= 0; iSlot--)
                        {
                            bool isDictionary = iSlot == nextDictionarySlot;
                            if (!isDictionary)
                            {
                                pVtable[iSlot] = LazyVTableResolver.GetThunkForSlot(iSlot);
                            }
                            else
                            {
                                if (typeWithDictionary.RetrieveRuntimeTypeHandleIfPossible())
                                {
                                    pVtable[iSlot] = typeWithDictionary.RuntimeTypeHandle.GetDictionary();
                                }
                                nextDictionarySlot = GetMostDerivedDictionarySlot(ref nextTypeToExamineForDictionarySlot, out typeWithDictionary);
                            }
                            numSlotsFilled++;
                        }
#else
                        Environment.FailFast("Template type loader is null, but metadata based type loader is not in use");
#endif
                    }

                    Debug.Assert(numSlotsFilled == numVtableSlots);

                    // Copy Pointer to finalizer method from the template type
                    if (hasFinalizer)
                    {
                        if (pTemplateEEType != null)
                        {
                            pEEType->FinalizerCode = pTemplateEEType->FinalizerCode;
                        }
                        else
                        {
#if SUPPORTS_NATIVE_METADATA_TYPE_LOADING
                            pEEType->FinalizerCode = LazyVTableResolver.GetFinalizerThunk();
#else
                            Environment.FailFast("Template type loader is null, but metadata based type loader is not in use");
#endif
                        }
                    }
                }

                // Copy the sealed vtable entries if they exist on the template type
                if (state.NumSealedVTableEntries > 0)
                {
                    state.HalfBakedSealedVTable = MemoryHelpers.AllocateMemory((int)state.NumSealedVTableEntries * IntPtr.Size);

                    UInt32 cbSealedVirtualSlotsTypeOffset = pEEType->GetFieldOffset(EETypeField.ETF_SealedVirtualSlots);
                    *((IntPtr*)((byte*)pEEType + cbSealedVirtualSlotsTypeOffset)) = state.HalfBakedSealedVTable;

                    for (UInt16 i = 0; i < state.NumSealedVTableEntries; i++)
                    {
                        IntPtr value = pTemplateEEType->GetSealedVirtualSlot(i);
                        pEEType->SetSealedVirtualSlot(value, i);
                    }
                }

                // Create a new DispatchMap for the type
                if (requiresDynamicDispatchMap)
                {
                    DispatchMap* pTemplateDispatchMap = (DispatchMap*)RuntimeAugments.GetDispatchMapForType(pTemplateEEType->ToRuntimeTypeHandle());

                    dynamicDispatchMapPtr = MemoryHelpers.AllocateMemory(pTemplateDispatchMap->Size);

                    UInt32 cbDynamicDispatchMapOffset = pEEType->GetFieldOffset(EETypeField.ETF_DynamicDispatchMap);
                    *((IntPtr*)((byte*)pEEType + cbDynamicDispatchMapOffset)) = dynamicDispatchMapPtr;

                    DispatchMap* pDynamicDispatchMap = (DispatchMap*)dynamicDispatchMapPtr;
                    pDynamicDispatchMap->NumEntries = pTemplateDispatchMap->NumEntries;

                    for (int i = 0; i < pTemplateDispatchMap->NumEntries; i++)
                    {
                        DispatchMap.DispatchMapEntry* pTemplateEntry = (*pTemplateDispatchMap)[i];
                        DispatchMap.DispatchMapEntry* pDynamicEntry = (*pDynamicDispatchMap)[i];

                        pDynamicEntry->_usInterfaceIndex = pTemplateEntry->_usInterfaceIndex;
                        pDynamicEntry->_usInterfaceMethodSlot = pTemplateEntry->_usInterfaceMethodSlot;
                        if (pTemplateEntry->_usImplMethodSlot < pTemplateEEType->NumVtableSlots)
                        {
                            pDynamicEntry->_usImplMethodSlot = (ushort)state.VTableSlotsMapping.GetVTableSlotInTargetType(pTemplateEntry->_usImplMethodSlot);
                            Debug.Assert(pDynamicEntry->_usImplMethodSlot < numVtableSlots);
                        }
                        else
                        {
                            // This is an entry in the sealed vtable. We need to adjust the slot number based on the number of vtable slots
                            // in the dynamic EEType
                            pDynamicEntry->_usImplMethodSlot = (ushort)(pTemplateEntry->_usImplMethodSlot - pTemplateEEType->NumVtableSlots + numVtableSlots);
                            Debug.Assert(state.NumSealedVTableEntries > 0 &&
                                pDynamicEntry->_usImplMethodSlot >= numVtableSlots &&
                                (pDynamicEntry->_usImplMethodSlot - numVtableSlots) < state.NumSealedVTableEntries);
                        }
                    }
                }

                if (pTemplateEEType != null)
                {
                    pEEType->DynamicTemplateType = pTemplateEEType;
                }
                else
                {
                    // Use object as the template type for non-template based EETypes. This will
                    // allow correct Module identification for types.

                    if (state.TypeBeingBuilt.HasVariance)
                    {
                        // TODO! We need to have a variant EEType here if the type has variance, as the 
                        // CreateGenericInstanceDescForType requires it. However, this is a ridiculous api surface
                        // When we remove GenericInstanceDescs from the product, get rid of this weird special
                        // case
                        pEEType->DynamicTemplateType = typeof(IEnumerable<int>).TypeHandle.ToEETypePtr();
                    }
                    else
                    {
                        pEEType->DynamicTemplateType = typeof(object).TypeHandle.ToEETypePtr();
                    }
                }

                int nonGCStaticDataOffset = 0;

                if (!isArray && !isGenericEETypeDef)
                {
                    nonGCStaticDataOffset = state.HasStaticConstructor ? -TypeBuilder.ClassConstructorOffset : 0;

                    // create GC desc
                    if (state.GcDataSize != 0 && state.GcStaticDesc == IntPtr.Zero)
                    {
                        int cbStaticGCDesc;
                        state.GcStaticDesc = CreateStaticGCDesc(state.StaticGCLayout, out state.AllocatedStaticGCDesc, out cbStaticGCDesc);
#if GENERICS_FORCE_USG
                        TestGCDescsForEquality(state.GcStaticDesc, state.NonUniversalStaticGCDesc, cbStaticGCDesc, false);
#endif
                    }

                    if (state.ThreadDataSize != 0 && state.ThreadStaticDesc == IntPtr.Zero)
                    {
                        int cbThreadStaticGCDesc;
                        state.ThreadStaticDesc = CreateStaticGCDesc(state.ThreadStaticGCLayout, out state.AllocatedThreadStaticGCDesc, out cbThreadStaticGCDesc);
#if GENERICS_FORCE_USG
                        TestGCDescsForEquality(state.ThreadStaticDesc, state.NonUniversalThreadStaticGCDesc, cbThreadStaticGCDesc, false);
#endif
                    }

                    // If we have a class constructor, our NonGcDataSize MUST be non-zero
                    Debug.Assert(!state.HasStaticConstructor || (state.NonGcDataSize != 0));
                }

                if (isGeneric)
                {
                    if (!RuntimeAugments.CreateGenericInstanceDescForType(*(RuntimeTypeHandle*)&pEEType, arity, state.NonGcDataSize, nonGCStaticDataOffset,
                        state.GcDataSize, (int)state.ThreadStaticOffset, state.GcStaticDesc, state.ThreadStaticDesc, state.GenericVarianceFlags))
                    {
                        throw new OutOfMemoryException();
                    }
                }
                else
                {
                    Debug.Assert(arity == 0 || isGenericEETypeDef);
                    // We don't need to report the non-gc and gc static data regions and allocate them for non-generics, 
                    // as we currently place these fields directly into the image
                    if (!isGenericEETypeDef && state.ThreadDataSize != 0)
                    {
                        // Types with thread static fields ALWAYS get a GID. The GID is used to perform GC 
                        // and lifetime management of the thread static data. However, these GIDs are only used for that
                        // so the specified GcDataSize, etc are 0
                        if (!RuntimeAugments.CreateGenericInstanceDescForType(*(RuntimeTypeHandle*)&pEEType, 0, 0, 0, 0, (int)state.ThreadStaticOffset, IntPtr.Zero, state.ThreadStaticDesc, null))
                        {
                            throw new OutOfMemoryException();
                        }
                    }
                }

                if (state.Dictionary != null)
                    state.HalfBakedDictionary = state.Dictionary.Allocate();

                Debug.Assert(!state.HalfBakedRuntimeTypeHandle.IsNull());
                Debug.Assert((state.NumSealedVTableEntries == 0 && state.HalfBakedSealedVTable == IntPtr.Zero) || (state.NumSealedVTableEntries > 0 && state.HalfBakedSealedVTable != IntPtr.Zero));
                Debug.Assert((state.Dictionary == null && state.HalfBakedDictionary == IntPtr.Zero) || (state.Dictionary != null && state.HalfBakedDictionary != IntPtr.Zero));

                successful = true;
            }
            finally
            {
                if (!successful)
                {
                    if (eeTypePtrPlusGCDesc != IntPtr.Zero)
                        MemoryHelpers.FreeMemory(eeTypePtrPlusGCDesc);
                    if (dynamicDispatchMapPtr != IntPtr.Zero)
                        MemoryHelpers.FreeMemory(dynamicDispatchMapPtr);
                    if (state.HalfBakedSealedVTable != IntPtr.Zero)
                        MemoryHelpers.FreeMemory(state.HalfBakedSealedVTable);
                    if (state.HalfBakedDictionary != IntPtr.Zero)
                        MemoryHelpers.FreeMemory(state.HalfBakedDictionary);
                    if (state.AllocatedStaticGCDesc)
                        MemoryHelpers.FreeMemory(state.GcStaticDesc);
                    if (state.AllocatedThreadStaticGCDesc)
                        MemoryHelpers.FreeMemory(state.ThreadStaticDesc);
                }
            }
        }
Beispiel #6
0
        public static IntPtr GetDictionary(EEType* pEEType)
        {
            // Dictionary slot is the first vtable slot

            EEType* pBaseType = pEEType->BaseType;
            int dictionarySlot = (pBaseType == null ? 0 : pBaseType->NumVtableSlots);
            return *(IntPtr*)((byte*)pEEType + sizeof(EEType) + dictionarySlot * IntPtr.Size);
        }