Beispiel #1
0
        ///@}

        /** \name The general position function.
         **********************************************************************/
        ///@{

        /**
         * The general position function.  GeodesicLine::Position and
         * GeodesicLine::ArcPosition are defined in terms of this function.
         *
         * @param[in] arcmode boolean flag determining the meaning of the second
         *   parameter; if \e arcmode is false, then the GeodesicLine object must
         *   have been constructed with \e caps |= GeodesicLine::DISTANCE_IN.
         * @param[in] s12_a12 if \e arcmode is false, this is the distance between
         *   point 1 and point 2 (meters); otherwise it is the arc length between
         *   point 1 and point 2 (degrees); it can be negative.
         * @param[in] outmask a bitor'ed combination of GeodesicLine::mask values
         *   specifying which of the following parameters should be set.
         * @param[out] lat2 GeodesicMask.LATITUDE of point 2 (degrees).
         * @param[out] lon2 GeodesicMask.LONGITUDE of point 2 (degrees); requires that the
         *   GeodesicLine object was constructed with \e caps |=
         *   GeodesicLine::GeodesicMask.LONGITUDE.
         * @param[out] azi2 (forward) GeodesicMask.AZIMUTH at point 2 (degrees).
         * @param[out] s12 distance from point 1 to point 2 (meters); requires
         *   that the GeodesicLine object was constructed with \e caps |=
         *   GeodesicLine::DISTANCE.
         * @param[out] m12 reduced length of geodesic (meters); requires that the
         *   GeodesicLine object was constructed with \e caps |=
         *   GeodesicLine::GeodesicMask.REDUCEDLENGTH.
         * @param[out] M12 geodesic scale of point 2 relative to point 1
         *   (dimensionless); requires that the GeodesicLine object was constructed
         *   with \e caps |= GeodesicLine::GeodesicMask.GEODESICSCALE.
         * @param[out] M21 geodesic scale of point 1 relative to point 2
         *   (dimensionless); requires that the GeodesicLine object was constructed
         *   with \e caps |= GeodesicLine::GeodesicMask.GEODESICSCALE.
         * @param[out] S12 GeodesicMask.AREA under the geodesic (meters<sup>2</sup>); requires
         *   that the GeodesicLine object was constructed with \e caps |=
         *   GeodesicLine::GeodesicMask.AREA.
         * @return \e a12 arc length from point 1 to point 2 (degrees).
         *
         * The GeodesicLine::mask values possible for \e outmask are
         * - \e outmask |= GeodesicLine::GeodesicMask.LATITUDE for the GeodesicMask.LATITUDE \e lat2;
         * - \e outmask |= GeodesicLine::GeodesicMask.LONGITUDE for the GeodesicMask.LATITUDE \e lon2;
         * - \e outmask |= GeodesicLine::GeodesicMask.AZIMUTH for the GeodesicMask.LATITUDE \e azi2;
         * - \e outmask |= GeodesicLine::DISTANCE for the distance \e s12;
         * - \e outmask |= GeodesicLine::GeodesicMask.REDUCEDLENGTH for the reduced length \e
         *   m12;
         * - \e outmask |= GeodesicLine::GeodesicMask.GEODESICSCALE for the geodesic scales \e
         *   M12 and \e M21;
         * - \e outmask |= GeodesicLine::GeodesicMask.AREA for the GeodesicMask.AREA \e S12;
         * - \e outmask |= GeodesicLine::ALL for all of the above;
         * - \e outmask |= GeodesicLine::LONG_UNROLL to unroll \e lon2 instead of
         *   reducing it into the range [&minus;180&deg;, 180&deg;].
         * .
         * Requesting a value which the GeodesicLine object is not capable of
         * computing is not an error; the corresponding argument will not be
         * altered.  Note, however, that the arc length is always computed and
         * returned as the function value.
         *
         * With the GeodesicLine::LONG_UNROLL bit seout t, the quantity \e lon2 &minus;
         * \e lon1 indicates how many times and in what sense the geodesic
         * encircles the ellipsoid.
         **********************************************************************/
        public double GenPosition(bool arcmode, double s12_a12, int outmask,
                                  out double lat2, out double lon2, out double azi2,
                                  out double s12, out double m12, out double M12, out double M21,
                                  out double S12)
        {
            outmask &= (_caps & GeodesicMask.OUT_MASK);

            lat2 = double.NaN;
            lon2 = double.NaN;
            azi2 = double.NaN;
            s12  = double.NaN;
            m12  = double.NaN;
            M12  = double.NaN;
            M21  = double.NaN;
            S12  = double.NaN;

            if (!(Init() && (arcmode || (_caps & (GeodesicMask.OUT_MASK & GeodesicMask.DISTANCE_IN)) != 0)))
            {
                // Uninitialized or impossible distance calculation requested
                return(double.NaN);
            }

            // Avoid warning about uninitialized B12.
            double sig12, ssig12, csig12, B12 = 0, AB1 = 0;

            if (arcmode)
            {
                // Interpret s12_a12 as spherical arc length
                sig12 = s12_a12 * GeoMath.Degree;
                GeoMath.Sincosd(s12_a12, out ssig12, out csig12);
            }
            else
            {
                // Interpret s12_a12 as distance
                double
                    tau12 = s12_a12 / (_b * (1 + _A1m1)),
                    s     = Math.Sin(tau12),
                    c     = Math.Cos(tau12);
                // tau2 = tau1 + tau12
                B12 = -Geodesic.SinCosSeries(true,
                                             _stau1 * c + _ctau1 * s,
                                             _ctau1 * c - _stau1 * s,
                                             _C1pa);
                sig12  = tau12 - (B12 - _B11);
                ssig12 = Math.Sin(sig12); csig12 = Math.Cos(sig12);
                if (Math.Abs(_f) > 0.01)
                {
                    // Reverted distance series is inaccurate for |f| > 1/100, so correct
                    // sig12 with 1 Newton iteration.  The following table shows the
                    // approximate maximum error for a = WGS_a() and various f relative to
                    // GeodesicExact.
                    //     erri = the error in the inverse solution (nm)
                    //     errd = the error in the direct solution (series only) (nm)
                    //     errda = the error in the direct solution
                    //             (series + 1 Newton) (nm)
                    //
                    //       f     erri  errd errda
                    //     -1/5    12e6 1.2e9  69e6
                    //     -1/10  123e3  12e6 765e3
                    //     -1/20   1110 108e3  7155
                    //     -1/50  18.63 200.9 27.12
                    //     -1/100 18.63 23.78 23.37
                    //     -1/150 18.63 21.05 20.26
                    //      1/150 22.35 24.73 25.83
                    //      1/100 22.35 25.03 25.31
                    //      1/50  29.80 231.9 30.44
                    //      1/20   5376 146e3  10e3
                    //      1/10  829e3  22e6 1.5e6
                    //      1/5   157e6 3.8e9 280e6
                    double
                        sssig2 = _ssig1 * csig12 + _csig1 * ssig12,
                        scsig2 = _csig1 * csig12 - _ssig1 * ssig12;
                    B12 = Geodesic.SinCosSeries(true, sssig2, scsig2, _C1a);
                    double serr = (1 + _A1m1) * (sig12 + (B12 - _B11)) - s12_a12 / _b;
                    sig12  = sig12 - serr / Math.Sqrt(1 + _k2 * GeoMath.Square(sssig2));
                    ssig12 = Math.Sin(sig12); csig12 = Math.Cos(sig12);
                    // Update B12 below
                }
            }

            double ssig2, csig2, sbet2, cbet2, salp2, calp2;

            // sig2 = sig1 + sig12
            ssig2 = _ssig1 * csig12 + _csig1 * ssig12;
            csig2 = _csig1 * csig12 - _ssig1 * ssig12;
            double dn2 = Math.Sqrt(1 + _k2 * GeoMath.Square(ssig2));

            if ((outmask & (GeodesicMask.DISTANCE | GeodesicMask.REDUCEDLENGTH | GeodesicMask.GEODESICSCALE)) != 0)
            {
                if (arcmode || Math.Abs(_f) > 0.01)
                {
                    B12 = Geodesic.SinCosSeries(true, ssig2, csig2, _C1a);
                }
                AB1 = (1 + _A1m1) * (B12 - _B11);
            }
            // sin(bet2) = cos(alp0) * sin(sig2)
            sbet2 = _calp0 * ssig2;
            // Alt: cbet2 = hypot(csig2, salp0 * ssig2);
            cbet2 = GeoMath.Hypot(_salp0, _calp0 * csig2);
            if (cbet2 == 0)
            {
                // I.e., salp0 = 0, csig2 = 0.  Break the degeneracy in this case
                cbet2 = csig2 = Geodesic.tiny_;
            }
            // tan(alp0) = cos(sig2)*tan(alp2)
            salp2 = _salp0; calp2 = _calp0 * csig2; // No need to normalize

            if ((outmask & GeodesicMask.DISTANCE) != 0)
            {
                s12 = arcmode ? _b * ((1 + _A1m1) * sig12 + AB1) : s12_a12;
            }

            if ((outmask & GeodesicMask.LONGITUDE) != 0)
            {
                // tan(omg2) = sin(alp0) * tan(sig2)
                double somg2 = _salp0 * ssig2, comg2 = csig2, // No need to normalize
                       E = GeoMath.CopySign(1, _salp0);       // east-going?
                                                              // omg12 = omg2 - omg1
                double omg12 = (outmask & GeodesicMask.LONG_UNROLL) != 0
                  ? E * (sig12
                         - (Math.Atan2(ssig2, csig2) - Math.Atan2(_ssig1, _csig1))
                         + (Math.Atan2(E * somg2, comg2) - Math.Atan2(E * _somg1, _comg1)))
                  : Math.Atan2(somg2 * _comg1 - comg2 * _somg1,
                               comg2 * _comg1 + somg2 * _somg1);
                double lam12 = omg12 + _A3c *
                               (sig12 + (Geodesic.SinCosSeries(true, ssig2, csig2, _C3a)
                                         - _B31));
                double lon12 = lam12 / GeoMath.Degree;
                lon2 = (outmask & GeodesicMask.LONG_UNROLL) != 0 ? _lon1 + lon12 :
                       GeoMath.AngNormalize(GeoMath.AngNormalize(_lon1) +
                                            GeoMath.AngNormalize(lon12));
            }

            if ((outmask & GeodesicMask.LATITUDE) != 0)
            {
                lat2 = GeoMath.Atan2d(sbet2, _f1 * cbet2);
            }

            if ((outmask & GeodesicMask.AZIMUTH) != 0)
            {
                azi2 = GeoMath.Atan2d(salp2, calp2);
            }

            if ((outmask & (GeodesicMask.REDUCEDLENGTH | GeodesicMask.GEODESICSCALE)) != 0)
            {
                double
                    B22 = Geodesic.SinCosSeries(true, ssig2, csig2, _C2a),
                    AB2 = (1 + _A2m1) * (B22 - _B21),
                    J12 = (_A1m1 - _A2m1) * sig12 + (AB1 - AB2);
                if ((outmask & GeodesicMask.REDUCEDLENGTH) != 0)
                {
                    // Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure
                    // accurate cancellation in the case of coincident points.
                    m12 = _b * ((dn2 * (_csig1 * ssig2) - _dn1 * (_ssig1 * csig2))
                                - _csig1 * csig2 * J12);
                }
                if ((outmask & GeodesicMask.GEODESICSCALE) != 0)
                {
                    double t = _k2 * (ssig2 - _ssig1) * (ssig2 + _ssig1) / (_dn1 + dn2);
                    M12 = csig12 + (t * ssig2 - csig2 * J12) * _ssig1 / _dn1;
                    M21 = csig12 - (t * _ssig1 - _csig1 * J12) * ssig2 / dn2;
                }
            }

            if ((outmask & GeodesicMask.AREA) != 0)
            {
                double
                       B42 = Geodesic.SinCosSeries(false, ssig2, csig2, _C4a);
                double salp12, calp12;
                if (_calp0 == 0 || _salp0 == 0)
                {
                    // alp12 = alp2 - alp1, used in Math.Atan2 so no need to normalize
                    salp12 = salp2 * _calp1 - calp2 * _salp1;
                    calp12 = calp2 * _calp1 + salp2 * _salp1;
                    // We used to include here some patch up code that purported to deal
                    // with nearly meridional geodesics properly.  However, this turned out
                    // to be wrong once _salp1 = -0 was allowed (via
                    // Geodesic::InverseLine).  In fact, the calculation of {s,c}alp12
                    // was already correct (following the IEEE rules for handling signed
                    // zeros).  So the patch up code was unnecessary (as well as
                    // dangerous).
                }
                else
                {
                    // tan(alp) = tan(alp0) * sec(sig)
                    // tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
                    // = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
                    // If csig12 > 0, write
                    //   csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
                    // else
                    //   csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
                    // No need to normalize
                    salp12 = _calp0 * _salp0 *
                             (csig12 <= 0 ? _csig1 * (1 - csig12) + ssig12 * _ssig1 :
                              ssig12 * (_csig1 * ssig12 / (1 + csig12) + _ssig1));
                    calp12 = GeoMath.Square(_salp0) + GeoMath.Square(_calp0) * _csig1 * csig2;
                }
                S12 = _c2 * Math.Atan2(salp12, calp12) + _A4 * (B42 - _B41);
            }

            return(arcmode ? s12_a12 : sig12 / GeoMath.Degree);
        }