Beispiel #1
0
        public static void ExportToGv(this MarkovDecisionProcess mdp, TextWriter sb)
        {
            sb.WriteLine("digraph S {");
            //sb.WriteLine("size = \"8,5\"");
            sb.WriteLine("node [shape=box];");
            var enumerator = mdp.GetEnumerator();

            enumerator.SelectInitialDistributions();
            var initialStateName = "initialState";

            sb.WriteLine($" {initialStateName} [shape=point,width=0.0,height=0.0,label=\"\"];");
            ExportDistributionsOfEnumerator(enumerator, initialStateName, sb);


            enumerator = mdp.GetEnumerator();
            while (enumerator.MoveNextState())
            {
                var state = enumerator.CurrentState;
                sb.Write($" {state} [label=\"{state}\\n(");
                for (int i = 0; i < mdp.StateFormulaLabels.Length; i++)
                {
                    if (i > 0)
                    {
                        sb.Write(",");
                    }
                    sb.Write(mdp.StateLabeling[state][i]);
                }
                sb.WriteLine(")\"];");
                ExportDistributionsOfEnumerator(enumerator, state.ToString(), sb);
            }
            sb.WriteLine("}");
        }
        public double CalculateMinimumFinalProbability(double[] initialStateProbabilities)
        {
            var enumerator = MarkovDecisionProcess.GetEnumerator();

            enumerator.SelectInitialDistributions();

            //select sum of first distribution
            enumerator.MoveNextDistribution();
            var sum = 0.0;

            while (enumerator.MoveNextTransition())
            {
                var entry = enumerator.CurrentTransition;
                sum += entry.Value * initialStateProbabilities[entry.Column];
            }
            var finalProbability = sum;

            //now find a smaller one
            while (enumerator.MoveNextDistribution())
            {
                sum = 0.0;
                while (enumerator.MoveNextTransition())
                {
                    var entry = enumerator.CurrentTransition;
                    sum += entry.Value * initialStateProbabilities[entry.Column];
                }
                if (sum < finalProbability)
                {
                    finalProbability = sum;
                }
            }
            return(finalProbability);
        }
        private void WriteMarkovChainToDisk()
        {
            _filePrism = new TemporaryFile("prism");

            var streamPrism = new StreamWriter(_filePrism.FilePath)
            {
                NewLine = "\n"
            };

            MarkovDecisionProcess.ExportToPrism(streamPrism);
        }
Beispiel #4
0
        internal double CalculateMinimumProbabilityToReachStateFormulaInBoundedSteps(Formula psi, int steps)
        {
            var psiEvaluator = MarkovDecisionProcess.CreateFormulaEvaluator(psi);

            var directlySatisfiedStates = CalculateSatisfiedStates(psiEvaluator);
            var excludedStates          = new Dictionary <int, bool>();   // change for \phi Until \psi

            var xnew = MinimumIterator(directlySatisfiedStates, excludedStates, steps);

            var finalProbability = CalculateMinimumFinalProbability(xnew);

            return(finalProbability);
        }
        internal double CalculateMinimumProbabilityToReachStateFormula(Formula psi)
        {
            // same algorithm as CalculateMinimumProbabilityToReachStateFormulaInBoundedSteps with different
            // directlySatisfiedStates and excludedStates
            var maxSteps = AdjustNumberOfStepsForFactor(50);

            var psiEvaluator = MarkovDecisionProcess.CreateFormulaEvaluator(psi);

            var directlySatisfiedStates = CalculateSatisfiedStates(psiEvaluator);
            var excludedStates          = new Dictionary <long, bool>();    // change for \phi Until \psi

            var exactlyZeroStates = StatesReachableWithProbabilityExactlyZeroForAtLeastOneScheduler(directlySatisfiedStates, excludedStates);
            var exactlyOneStates  = SubsetOfStatesReachableWithProbabilityExactlyOneWithAllSchedulers(directlySatisfiedStates, excludedStates);            // this algorithm is only an approximation

            var xnew = MinimumIterator(exactlyOneStates, exactlyZeroStates, maxSteps);

            var finalProbability = CalculateMinimumFinalProbability(xnew);

            return(finalProbability);
        }
Beispiel #6
0
        private double CalculateMaximumProbabilityToReachStateFormula(Formula psi)
        {
            // same algorithm as CalculateMaximumProbabilityToReachStateFormulaInBoundedSteps with different
            // directlySatisfiedStates and excludedStates
            var maxSteps = 50;

            var psiEvaluator = MarkovDecisionProcess.CreateFormulaEvaluator(psi);

            var directlySatisfiedStates = CalculateSatisfiedStates(psiEvaluator);
            var excludedStates          = new Dictionary <int, bool>();    // change for \phi Until \psi

            var exactlyZeroStates = StatesReachableWithProbabilityExactlyZeroWithAllSchedulers(directlySatisfiedStates, excludedStates);
            var exactlyOneStates  = StatesReachableWithProbabilityExactlyOneForAtLeastOneScheduler(directlySatisfiedStates, excludedStates);            //cannot perform a better pre calculation

            var xnew = MaximumIterator(exactlyOneStates, exactlyZeroStates, maxSteps);

            var finalProbability = CalculateMaximumFinalProbability(xnew);

            return(finalProbability);
        }
            public UnderlyingDigraph(MarkovDecisionProcess mdp)
            {
                //Assumption "every node is reachable" is fulfilled due to the construction
                BaseGraph = new BidirectionalGraph <EdgeData>();

                var enumerator = mdp.GetEnumerator();

                while (enumerator.MoveNextState())
                {
                    while (enumerator.MoveNextDistribution())
                    {
                        //find targets of this distribution and create the union. Some possibleSuccessors may be added
                        while (enumerator.MoveNextTransition())
                        {
                            if (enumerator.CurrentTransition.Value > 0.0)
                            {
                                BaseGraph.AddVerticesAndEdge(new Edge <EdgeData>(enumerator.CurrentState, enumerator.CurrentTransition.Column, new EdgeData(enumerator.RowOfCurrentDistribution)));
                            }
                        }
                    }
                }
            }
 // Note: Should be used with using(var modelchecker = new ...), otherwise the disposed method may be
 // executed by the .net framework directly after using _filePrism.FilePath the last time and the
 // file deleted before it could be used by the prism process
 public ExternalMdpModelCheckerPrism(MarkovDecisionProcess mdp, TextWriter output = null) : base(mdp, output)
 {
     WriteMarkovChainToDisk();
 }
Beispiel #9
0
 internal MdpToPrism(MarkovDecisionProcess mdp)
 {
     _mdp = mdp;
 }
Beispiel #10
0
        internal static void ExportToPrism(this MarkovDecisionProcess mdp, TextWriter sb)
        {
            var mdpToPrism = new MdpToPrism(mdp);

            mdpToPrism.WriteMarkovDecisionProcessToStream(sb);
        }
 // Note: Should be used with using(var modelchecker = new ...)
 public BuiltinMdpModelChecker(MarkovDecisionProcess mdp, TextWriter output = null)
     : base(mdp, output)
 {
     _underlyingDigraph = MarkovDecisionProcess.CreateUnderlyingDigraph();
 }
        public Dictionary <long, bool> StatesReachableWithProbabilityExactlyOneForAtLeastOneScheduler(Dictionary <long, bool> directlySatisfiedStates,
                                                                                                      Dictionary <long, bool> excludedStates)
        {
            // calculate probabilityExactlyOne (prob1e). There exists a scheduler, for which the probability of
            // the resulting states is exactly 1. The result may be different for another scheduler, but at least there exists one.
            // This is exact

            // The algorithm works this way: It looks at a set of states probabilityMightBeExactlyOne which are initially all states.
            // Then it iterates until a fixpoint is found. In each iteration states are removed from probabilityMightBeExactlyOne for
            // which a scheduler _must_ switch to a state where the probability is < 1.
            // The removal process works this way: In each iteration a backwards search is started.
            // A distribution from a predecessor is removed, if not every transition of the distribution leads to a
            // state in probabilityMightBeExactlyOne (Reason: It is possible from there to go to a state where probability < 1).
            // The fixpoint is the result.

            Func <long, bool> nodesToIgnore  = excludedStates.ContainsKey;
            var probabilityMightBeExactlyOne = CreateComplement(new Dictionary <long, bool>());            //all states

            var    _isDistributionIncludedCache = new Dictionary <long, bool>();
            var    mdpEnumerator = MarkovDecisionProcess.GetEnumerator();
            Action resetDistributionIncludedCacheForNewIteration = () =>
            {
                // One possible optimization.
                // Only true entries must be deleted because the eligible distributions get less and less each iteration
                // On the other hand: Clearing the whole data structure makes the dictionary smaller and access faster.
                _isDistributionIncludedCache.Clear();
            };
            Func <long, bool> isDistributionIncluded = rowOfDistribution =>
            {
                if (_isDistributionIncludedCache.ContainsKey(rowOfDistribution))
                {
                    return(_isDistributionIncludedCache[rowOfDistribution]);
                }

                mdpEnumerator.MoveToDistribution(rowOfDistribution);
                var includeDistribution = true;
                while (includeDistribution && mdpEnumerator.MoveNextTransition())
                {
                    var targetState = mdpEnumerator.CurrentTransition.Column;
                    // if targetstate is not found in probabilityMightBeExactlyOne then the complete distribution has to be removed
                    if (!probabilityMightBeExactlyOne.ContainsKey(targetState))
                    {
                        includeDistribution = false;
                    }
                }
                return(includeDistribution);
            };

            var fixpointReached = false;

            while (!fixpointReached)
            {
                resetDistributionIncludedCacheForNewIteration();
                var ancestorsFound = new Dictionary <long, bool>();                //Note: ancestorsFound must not be reused

                // based on DFS https://en.wikipedia.org/wiki/Depth-first_search
                var nodesToTraverse = new Stack <long>();
                foreach (var node in directlySatisfiedStates)
                {
                    nodesToTraverse.Push(node.Key);
                }

                while (nodesToTraverse.Count > 0)
                {
                    var currentNode       = nodesToTraverse.Pop();
                    var isIgnored         = nodesToIgnore(currentNode);
                    var alreadyDiscovered = ancestorsFound.ContainsKey(currentNode);
                    if (!(isIgnored || alreadyDiscovered))
                    {
                        ancestorsFound.Add(currentNode, true);
                        foreach (var inEdge in _underlyingDigraph.BaseGraph.InEdges(currentNode))
                        {
                            if (isDistributionIncluded(inEdge.Data.RowOfDistribution))
                            {
                                nodesToTraverse.Push(inEdge.Source);
                            }
                        }
                    }
                }

                if (probabilityMightBeExactlyOne.Count == ancestorsFound.Count)
                {
                    fixpointReached = true;
                }
                Assert.That(probabilityMightBeExactlyOne.Count >= ancestorsFound.Count, "bug!");
                probabilityMightBeExactlyOne = ancestorsFound;
            }

            return(probabilityMightBeExactlyOne);
        }
        public Dictionary <long, bool> StatesReachableWithProbabilityExactlyZeroForAtLeastOneScheduler(
            Dictionary <long, bool> directlySatisfiedStates, Dictionary <long, bool> excludedStates)
        {
            // calculate probabilityExactlyZero (prob0e). There exists a scheduler, for which the probability of
            // the resulting states is zero. The result may be different for another scheduler, but at least there exists one.
            // This is exact

            Dictionary <long, bool> ancestorsFound = null;
            var probabilityGreaterThanZero         = directlySatisfiedStates;     //we know initially this is satisfied

            var mdpEnumerator = MarkovDecisionProcess.GetEnumerator();
            // The idea of the algorithm is to calculate probabilityGreaterThanZero:
            //     all states where a directlySatisfiedState is reached with a probability > 0
            //     no matter which scheduler is selected (valid for _all_ adversaries).
            // The complement of probabilityGreaterThanZero is the set of states where a scheduler _exists_ for
            //     which the probability to reach a directlySatisfiedState is exactly 0.
            Func <long, bool> nodesToIgnore = source =>
            {
                //nodes found by UpdateAncestors are always SourceNodes of a edge to an ancestor in ancestorsFound
                if (excludedStates.ContainsKey(source))
                {
                    return(false);                    //source must not be ignored
                }
                if (directlySatisfiedStates.ContainsKey(source))
                {
                    return(false);                    //source must not be ignored
                }
                // must not be cached (, because ancestorsFound might change, even in the same iteration)!!!
                // check if _all_ distributions of source contain at least transition to a ancestor in ancestorsFound
                mdpEnumerator.SelectSourceState(source);
                while (mdpEnumerator.MoveNextDistribution())
                {
                    var foundInDistribution = false;
                    while (mdpEnumerator.MoveNextTransition() && !foundInDistribution)
                    {
                        if (ancestorsFound.ContainsKey(mdpEnumerator.CurrentTransition.Column))
                        {
                            foundInDistribution = true;
                        }
                    }
                    if (!foundInDistribution)
                    {
                        return(true);                        // the distribution does not have a targetState in ancestorsFound, so source must be ignored
                    }
                }
                return(false);                //source must not be ignored
            };

            // initialize probabilityGreaterThanZero to the states where we initially know the probability is greater than zero
            var fixpointReached = false;

            while (!fixpointReached)
            {
                // Calculate fix point of probabilityGreaterThanZero
                // Should be finished in one iteration, but I have not proved it yet, so repeat it until fixpoint is reached for sure.
                // (The proof relies on details of the algorithm GetAncestors. Intuition: When a state s was not added to the set of
                //  ancestors it is because one distribution d' has no target state in the ancestors found yet. If the state is in the
                //  final set of ancestors, the reason is that the state s' of the distribution d', which was responsible for declining
                //  s has not yet been added to ancestors. When s' is added all its ancestors are traversed again and s is found.)
                // Note:
                //   UpdateAncestors must be used, because nodesToIgnore requires access to the current information about the ancestors
                //   (ancestorsFound), if it should work in one iteration.
                ancestorsFound = new Dictionary <long, bool>();
                //Note: We reuse ancestorsFound, which is also known and used by nodesToIgnore. The side effects are on purpose.
                // based on DFS https://en.wikipedia.org/wiki/Depth-first_search
                var nodesToTraverse = new Stack <long>();
                foreach (var node in probabilityGreaterThanZero)
                {
                    nodesToTraverse.Push(node.Key);
                }

                while (nodesToTraverse.Count > 0)
                {
                    var currentNode       = nodesToTraverse.Pop();
                    var isIgnored         = nodesToIgnore(currentNode);
                    var alreadyDiscovered = ancestorsFound.ContainsKey(currentNode);
                    if (!(isIgnored || alreadyDiscovered))
                    {
                        ancestorsFound.Add(currentNode, true);
                        foreach (var inEdge in _underlyingDigraph.BaseGraph.InEdges(currentNode))
                        {
                            nodesToTraverse.Push(inEdge.Source);
                        }
                    }
                }

                if (probabilityGreaterThanZero.Count == ancestorsFound.Count)
                {
                    fixpointReached = true;
                }
                probabilityGreaterThanZero = ancestorsFound;
            }

            var probabilityExactlyZero = CreateComplement(probabilityGreaterThanZero);

            return(probabilityExactlyZero);
        }
        internal double[] MaximumIterator(Dictionary <long, bool> exactlyOneStates, Dictionary <long, bool> exactlyZeroStates, int steps)
        {
            var stopwatch = new Stopwatch();

            stopwatch.Start();

            var stateCount = MarkovDecisionProcess.States;
            var enumerator = MarkovDecisionProcess.GetEnumerator();

            var xold  = new double[stateCount];
            var xnew  = CreateDerivedVector(exactlyOneStates);
            var loops = 0;

            while (loops < steps)
            {
                // switch xold and xnew
                var xtemp = xold;
                xold = xnew;
                xnew = xtemp;
                loops++;
                for (var i = 0; i < stateCount; i++)
                {
                    if (exactlyOneStates.ContainsKey(i))
                    {
                        //we could remove this line, because already set by CreateDerivedVector and never changed when we initialize xold with CreateDerivedVector(directlySatisfiedStates)
                        xnew[i] = 1.0;
                    }
                    else if (exactlyZeroStates.ContainsKey(i))
                    {
                        //we could remove this line, because already set by CreateDerivedVector and never changed when we initialize xold with CreateDerivedVector(directlySatisfiedStates)
                        xnew[i] = 0.0;
                    }
                    else
                    {
                        enumerator.SelectSourceState(i);
                        //select sum of first distribution
                        enumerator.MoveNextDistribution();
                        var sum = 0.0;
                        while (enumerator.MoveNextTransition())
                        {
                            var entry = enumerator.CurrentTransition;
                            sum += entry.Value * xold[entry.Column];
                        }
                        xnew[i] = sum;
                        //now find a larger one
                        while (enumerator.MoveNextDistribution())
                        {
                            sum = 0.0;
                            while (enumerator.MoveNextTransition())
                            {
                                var entry = enumerator.CurrentTransition;
                                sum += entry.Value * xold[entry.Column];
                            }
                            if (sum > xnew[i])
                            {
                                xnew[i] = sum;
                            }
                        }
                    }
                }

                if (loops % 10 == 0)
                {
                    stopwatch.Stop();
                    var currentProbability = CalculateMaximumFinalProbability(xnew);
                    _output?.WriteLine(
                        $"{loops} Bounded Until iterations in {stopwatch.Elapsed}. Current probability={currentProbability.ToString(CultureInfo.InvariantCulture)}");
                    stopwatch.Start();
                }
            }
            stopwatch.Stop();
            return(xnew);
        }
 public MarkovDecisionProcessEnumerator(MarkovDecisionProcess mdp)
 {
     _mdp = mdp;
     _matrixEnumerator = mdp.RowsWithDistributions.GetEnumerator();
     Reset();
 }
Beispiel #16
0
 // Note: Should be used with using(var modelchecker = new ...)
 protected MdpModelChecker(MarkovDecisionProcess mdp, TextWriter output = null)
 {
     MarkovDecisionProcess = mdp;
     _output = output;
 }