Beispiel #1
0
        /* constant time multiply by small integer of length bts - use ladder */
        public ECP PinMul(int e, int bts)
        {
            if (CURVETYPE == MONTGOMERY)
            {
                return(Mul(new BIG(e)));
            }
            else
            {
                int i, b;
                ECP P  = new ECP();
                ECP R0 = new ECP();
                ECP R1 = new ECP();
                R1.Copy(this);

                for (i = bts - 1; i >= 0; i--)
                {
                    b = (e >> i) & 1;
                    P.Copy(R1);
                    P.Add(R0);
                    R0.CSwap(R1, b);
                    R1.Copy(P);
                    R0.Dbl();
                    R0.CSwap(R1, b);
                }

                P.Copy(R0);
                P.Affine();
                return(P);
            }
        }
        /**
         * check whether the issuer public key is correct
         *
         * @return true iff valid
         */
        public bool Check()
        {
            // check formalities of IdemixIssuerPublicKey
            if (AttributeNames == null || Hsk == null || HRand == null || HAttrs == null || BarG1 == null || BarG1.IsInfinity() || BarG2 == null || HAttrs.Length < AttributeNames.Length)
            {
                return(false);
            }

            for (int i = 0; i < AttributeNames.Length; i++)
            {
                if (HAttrs[i] == null)
                {
                    return(false);
                }
            }

            // check proofs
            ECP2 t1 = IdemixUtils.GenG2.Mul(ProofS);
            ECP  t2 = BarG1.Mul(ProofS);

            t1.Add(W.Mul(BIG.ModNeg(ProofC, IdemixUtils.GROUP_ORDER)));
            t2.Add(BarG2.Mul(BIG.ModNeg(ProofC, IdemixUtils.GROUP_ORDER)));

            // Generating proofData that will contain 3 elements in G1 (of size 2*FIELD_BYTES+1)and 3 elements in G2 (of size 4 * FIELD_BYTES)
            byte[] proofData = new byte[0];
            proofData = proofData.Append(t1.ToBytes());
            proofData = proofData.Append(t2.ToBytes());
            proofData = proofData.Append(IdemixUtils.GenG2.ToBytes());
            proofData = proofData.Append(BarG1.ToBytes());
            proofData = proofData.Append(W.ToBytes());
            proofData = proofData.Append(BarG2.ToBytes());

            // Hash proofData to hproofdata and compare with proofC
            return(Enumerable.SequenceEqual(proofData.HashModOrder().ToBytes(), ProofC.ToBytes()));
        }
        /**
         * Constructor creating a new credential
         *
         * @param key   the issuer key pair
         * @param m     a credential request
         * @param attrs an array of attribute values as BIG
         */
        public IdemixCredential(IdemixIssuerKey key, IdemixCredRequest m, BIG[] attrs)
        {
            if (key == null || key.Ipk == null || m == null || attrs == null)
            {
                throw new ArgumentException("Cannot create idemix credential from null input");
            }
            if (attrs.Length != key.Ipk.AttributeNames.Length)
            {
                throw new ArgumentException("Amount of attribute values does not match amount of attributes in issuer public key");
            }
            RAND rng = IdemixUtils.GetRand();

            // Place a BBS+ signature on the user key and the attribute values
            // (For BBS+, see "Constant-Size Dynamic k-TAA" by Man Ho Au, Willy Susilo, Yi Mu)
            E = rng.RandModOrder();
            S = rng.RandModOrder();

            B = new ECP();
            B.Copy(IdemixUtils.GenG1);
            B.Add(m.Nym);
            B.Add(key.Ipk.HRand.Mul(S));

            for (int i = 0; i < attrs.Length / 2; i++)
            {
                B.Add(key.Ipk.HAttrs[2 * i].Mul2(attrs[2 * i], key.Ipk.HAttrs[2 * i + 1], attrs[2 * i + 1]));
            }

            if (attrs.Length % 2 != 0)
            {
                B.Add(key.Ipk.HAttrs[attrs.Length - 1].Mul(attrs[attrs.Length - 1]));
            }

            BIG exp = new BIG(key.Isk).Plus(E);

            exp.Mod(IdemixUtils.GROUP_ORDER);
            exp.InvModp(IdemixUtils.GROUP_ORDER);
            A = B.Mul(exp);

            Attrs = new byte[attrs.Length][];
            for (int i = 0; i < attrs.Length; i++)
            {
                byte[] b = new byte[IdemixUtils.FIELD_BYTES];
                attrs[i].ToBytes(b);
                Attrs[i] = b;
            }
        }
        /**
         * verify cryptographically verifies the credential
         *
         * @param sk  the secret key of the user
         * @param ipk the public key of the issuer
         * @return true iff valid
         */
        public bool Verify(BIG sk, IdemixIssuerPublicKey ipk)
        {
            if (ipk == null || Attrs.Length != ipk.AttributeNames.Length)
            {
                return(false);
            }

            foreach (byte[] attr in Attrs)
            {
                if (attr == null)
                {
                    return(false);
                }
            }

            ECP bPrime = new ECP();

            bPrime.Copy(IdemixUtils.GenG1);
            bPrime.Add(ipk.Hsk.Mul2(sk, ipk.HRand, S));
            for (int i = 0; i < Attrs.Length / 2; i++)
            {
                bPrime.Add(ipk.HAttrs[2 * i].Mul2(BIG.FromBytes(Attrs[2 * i]), ipk.HAttrs[2 * i + 1], BIG.FromBytes(Attrs[2 * i + 1])));
            }

            if (Attrs.Length % 2 != 0)
            {
                bPrime.Add(ipk.HAttrs[Attrs.Length - 1].Mul(BIG.FromBytes(Attrs[Attrs.Length - 1])));
            }

            if (!B.Equals(bPrime))
            {
                return(false);
            }

            ECP2 a = IdemixUtils.GenG2.Mul(E);

            a.Add(ipk.W);
            a.Affine();
            return(PAIR.FExp(PAIR.Ate(a, A)).Equals(PAIR.FExp(PAIR.Ate(IdemixUtils.GenG2, B))));
        }
Beispiel #5
0
        /* Return e.this+f.Q */

        public ECP Mul2(BIG e, ECP Q, BIG f)
        {
            BIG te = new BIG();
            BIG tf = new BIG();
            BIG mt = new BIG();
            ECP S  = new ECP();
            ECP T  = new ECP();
            ECP C  = new ECP();

            ECP[]   W = new ECP[8];
            sbyte[] w = new sbyte[1 + (BIG.NLEN * BIG.BASEBITS + 1) / 2];
            int     i, s, ns, nb;
            sbyte   a, b;

            //affine();
            //Q.affine();

            te.Copy(e);
            tf.Copy(f);

            // precompute table
            W[1] = new ECP();
            W[1].Copy(this);
            W[1].Sub(Q);
            W[2] = new ECP();
            W[2].Copy(this);
            W[2].Add(Q);
            S.Copy(Q);
            S.Dbl();
            W[0] = new ECP();
            W[0].Copy(W[1]);
            W[0].Sub(S);
            W[3] = new ECP();
            W[3].Copy(W[2]);
            W[3].Add(S);
            T.Copy(this);
            T.Dbl();
            W[5] = new ECP();
            W[5].Copy(W[1]);
            W[5].Add(T);
            W[6] = new ECP();
            W[6].Copy(W[2]);
            W[6].Add(T);
            W[4] = new ECP();
            W[4].Copy(W[5]);
            W[4].Sub(S);
            W[7] = new ECP();
            W[7].Copy(W[6]);
            W[7].Add(S);

            // if multiplier is odd, add 2, else add 1 to multiplier, and add 2P or P to correction

            s = te.Parity();
            te.Inc(1);
            te.Norm();
            ns = te.Parity();
            mt.Copy(te);
            mt.Inc(1);
            mt.Norm();
            te.CMove(mt, s);
            T.CMove(this, ns);
            C.Copy(T);

            s = tf.Parity();
            tf.Inc(1);
            tf.Norm();
            ns = tf.Parity();
            mt.Copy(tf);
            mt.Inc(1);
            mt.Norm();
            tf.CMove(mt, s);
            S.CMove(Q, ns);
            C.Add(S);

            mt.Copy(te);
            mt.Add(tf);
            mt.Norm();
            nb = 1 + (mt.NBits() + 1) / 2;

            // convert exponent to signed 2-bit window
            for (i = 0; i < nb; i++)
            {
                a = (sbyte)(te.LastBits(3) - 4);
                te.Dec(a);
                te.Norm();
                te.FShr(2);
                b = (sbyte)(tf.LastBits(3) - 4);
                tf.Dec(b);
                tf.Norm();
                tf.FShr(2);
                w[i] = (sbyte)(4 * a + b);
            }

            w[nb] = (sbyte)(4 * te.LastBits(3) + tf.LastBits(3));
            S.Copy(W[(w[nb] - 1) / 2]);

            for (i = nb - 1; i >= 0; i--)
            {
                T.Select(W, w[i]);
                S.Dbl();
                S.Dbl();
                S.Add(T);
            }

            S.Sub(C); // apply correction
            S.Affine();
            return(S);
        }
Beispiel #6
0
        /* return e.this */

        public ECP Mul(BIG e)
        {
            if (e.IsZilch() || IsInfinity())
            {
                return(new ECP());
            }

            ECP P = new ECP();

            if (CURVETYPE == MONTGOMERY)
            {
                /* use Ladder */
                int nb, i, b;
                ECP D  = new ECP();
                ECP R0 = new ECP();
                R0.Copy(this);
                ECP R1 = new ECP();
                R1.Copy(this);
                R1.Dbl();

                D.Copy(this);
                D.Affine();
                nb = e.NBits();
                for (i = nb - 2; i >= 0; i--)
                {
                    b = e.Bit(i);
                    P.Copy(R1);

                    P.DAdd(R0, D);
                    R0.CSwap(R1, b);
                    R1.Copy(P);
                    R0.Dbl();
                    R0.CSwap(R1, b);
                }

                P.Copy(R0);
            }
            else
            {
                // fixed size windows
                int     i, nb, s, ns;
                BIG     mt = new BIG();
                BIG     t  = new BIG();
                ECP     Q  = new ECP();
                ECP     C  = new ECP();
                ECP[]   W  = new ECP[8];
                sbyte[] w  = new sbyte[1 + (BIG.NLEN * BIG.BASEBITS + 3) / 4];

                //affine();

                // precompute table
                Q.Copy(this);

                Q.Dbl();
                W[0] = new ECP();
                W[0].Copy(this);

                for (i = 1; i < 8; i++)
                {
                    W[i] = new ECP();
                    W[i].Copy(W[i - 1]);
                    W[i].Add(Q);
                }

                // make exponent odd - add 2P if even, P if odd
                t.Copy(e);
                s = t.Parity();
                t.Inc(1);
                t.Norm();
                ns = t.Parity();
                mt.Copy(t);
                mt.Inc(1);
                mt.Norm();
                t.CMove(mt, s);
                Q.CMove(this, ns);
                C.Copy(Q);

                nb = 1 + (t.NBits() + 3) / 4;

                // convert exponent to signed 4-bit window
                for (i = 0; i < nb; i++)
                {
                    w[i] = (sbyte)(t.LastBits(5) - 16);
                    t.Dec(w[i]);
                    t.Norm();
                    t.FShr(4);
                }

                w[nb] = (sbyte)t.LastBits(5);

                P.Copy(W[(w[nb] - 1) / 2]);
                for (i = nb - 1; i >= 0; i--)
                {
                    Q.Select(W, w[i]);
                    P.Dbl();
                    P.Dbl();
                    P.Dbl();
                    P.Dbl();
                    P.Add(Q);
                }

                P.Sub(C); // apply correction
            }

            P.Affine();
            return(P);
        }
        /**
         * Create a new IdemixSignature by proving knowledge of a credential
         *
         * @param c          the credential used to create an idemix signature
         * @param sk         the signer's secret key
         * @param pseudonym  a pseudonym of the signer
         * @param ipk        the issuer public key
         * @param disclosure a bool-array that steers the disclosure of attributes
         * @param msg        the message to be signed
         * @param rhIndex    the index of the attribute that represents the revocation handle
         * @param cri        the credential revocation information that allows the signer to prove non-revocation
         */
        public IdemixSignature(IdemixCredential c, BIG sk, IdemixPseudonym pseudonym, IdemixIssuerPublicKey ipk, bool[] disclosure, byte[] msg, int rhIndex, CredentialRevocationInformation cri)
        {
            if (c == null || sk == null || pseudonym == null || pseudonym.Nym == null || pseudonym.RandNym == null || ipk == null || disclosure == null || msg == null || cri == null)
            {
                throw new ArgumentException("Cannot construct idemix signature from null input");
            }

            if (disclosure.Length != c.Attrs.Length)
            {
                throw new ArgumentException("Disclosure length must be the same as the number of attributes");
            }

            if (cri.RevocationAlg >= Enum.GetValues(typeof(RevocationAlgorithm)).Length)
            {
                throw new ArgumentException("CRI specifies unknown revocation algorithm");
            }

            if (cri.RevocationAlg != (int)RevocationAlgorithm.ALG_NO_REVOCATION && disclosure[rhIndex])
            {
                throw new ArgumentException("Attribute " + rhIndex + " is disclosed but also used a revocation handle attribute, which should remain hidden");
            }

            RevocationAlgorithm revocationAlgorithm = (RevocationAlgorithm)cri.RevocationAlg;

            int[] hiddenIndices = HiddenIndices(disclosure);
            RAND  rng           = IdemixUtils.GetRand();
            // Start signature
            BIG r1 = rng.RandModOrder();
            BIG r2 = rng.RandModOrder();
            BIG r3 = new BIG(r1);

            r3.InvModp(IdemixUtils.GROUP_ORDER);

            nonce = rng.RandModOrder();

            aPrime = PAIR.G1Mul(c.A, r1);
            aBar   = PAIR.G1Mul(c.B, r1);
            aBar.Sub(PAIR.G1Mul(aPrime, c.E));

            bPrime = PAIR.G1Mul(c.B, r1);
            bPrime.Sub(PAIR.G1Mul(ipk.HRand, r2));
            BIG sPrime = new BIG(c.S);

            sPrime.Add(BIG.ModNeg(BIG.ModMul(r2, r3, IdemixUtils.GROUP_ORDER), IdemixUtils.GROUP_ORDER));
            sPrime.Mod(IdemixUtils.GROUP_ORDER);

            //Construct Zero Knowledge Proof
            BIG rsk     = rng.RandModOrder();
            BIG re      = rng.RandModOrder();
            BIG rR2     = rng.RandModOrder();
            BIG rR3     = rng.RandModOrder();
            BIG rSPrime = rng.RandModOrder();
            BIG rRNym   = rng.RandModOrder();

            BIG[] rAttrs = new BIG[hiddenIndices.Length];
            for (int i = 0; i < hiddenIndices.Length; i++)
            {
                rAttrs[i] = rng.RandModOrder();
            }

            // Compute non-revoked proof
            INonRevocationProver prover = NonRevocationProver.GetNonRevocationProver(revocationAlgorithm);
            int hiddenRHIndex           = Array.IndexOf(hiddenIndices, rhIndex);

            if (hiddenRHIndex < 0)
            {
                // rhIndex is not present, set to last index position
                hiddenRHIndex = hiddenIndices.Length;
            }

            byte[] nonRevokedProofHashData = prover.GetFSContribution(BIG.FromBytes(c.Attrs[rhIndex]), rAttrs[hiddenRHIndex], cri);
            if (nonRevokedProofHashData == null)
            {
                throw new Exception("Failed to compute non-revoked proof");
            }

            ECP t1 = aPrime.Mul2(re, ipk.HRand, rR2);
            ECP t2 = PAIR.G1Mul(ipk.HRand, rSPrime);

            t2.Add(bPrime.Mul2(rR3, ipk.Hsk, rsk));

            for (int i = 0; i < hiddenIndices.Length / 2; i++)
            {
                t2.Add(ipk.HAttrs[hiddenIndices[2 * i]].Mul2(rAttrs[2 * i], ipk.HAttrs[hiddenIndices[2 * i + 1]], rAttrs[2 * i + 1]));
            }

            if (hiddenIndices.Length % 2 != 0)
            {
                t2.Add(PAIR.G1Mul(ipk.HAttrs[hiddenIndices[hiddenIndices.Length - 1]], rAttrs[hiddenIndices.Length - 1]));
            }

            ECP t3 = ipk.Hsk.Mul2(rsk, ipk.HRand, rRNym);

            // create proofData such that it can contain the sign label, 7 elements in G1 (each of size 2*FIELD_BYTES+1),
            // the ipk hash, the disclosure array, and the message
            byte[] proofData = new byte[0];
            proofData = proofData.Append(SIGN_LABEL.ToBytes());
            proofData = proofData.Append(t1.ToBytes());
            proofData = proofData.Append(t2.ToBytes());
            proofData = proofData.Append(t3.ToBytes());
            proofData = proofData.Append(aPrime.ToBytes());
            proofData = proofData.Append(aBar.ToBytes());
            proofData = proofData.Append(bPrime.ToBytes());
            proofData = proofData.Append(pseudonym.Nym.ToBytes());
            proofData = proofData.Append(ipk.Hash);
            proofData = proofData.Append(disclosure);
            proofData = proofData.Append(msg);

            BIG cvalue = proofData.HashModOrder();

            byte[] finalProofData = new byte[0];
            finalProofData = finalProofData.Append(cvalue.ToBytes());
            finalProofData = finalProofData.Append(nonce.ToBytes());

            proofC = finalProofData.HashModOrder();

            proofSSk     = rsk.ModAdd(BIG.ModMul(proofC, sk, IdemixUtils.GROUP_ORDER), IdemixUtils.GROUP_ORDER);
            proofSE      = re.ModSub(BIG.ModMul(proofC, c.E, IdemixUtils.GROUP_ORDER), IdemixUtils.GROUP_ORDER);
            proofSR2     = rR2.ModAdd(BIG.ModMul(proofC, r2, IdemixUtils.GROUP_ORDER), IdemixUtils.GROUP_ORDER);
            proofSR3     = rR3.ModSub(BIG.ModMul(proofC, r3, IdemixUtils.GROUP_ORDER), IdemixUtils.GROUP_ORDER);
            proofSSPrime = rSPrime.ModAdd(BIG.ModMul(proofC, sPrime, IdemixUtils.GROUP_ORDER), IdemixUtils.GROUP_ORDER);
            proofSRNym   = rRNym.ModAdd(BIG.ModMul(proofC, pseudonym.RandNym, IdemixUtils.GROUP_ORDER), IdemixUtils.GROUP_ORDER);

            nym = new ECP();
            nym.Copy(pseudonym.Nym);

            proofSAttrs = new BIG[hiddenIndices.Length];
            for (int i = 0; i < hiddenIndices.Length; i++)
            {
                proofSAttrs[i] = new BIG(rAttrs[i]);
                proofSAttrs[i].Add(BIG.ModMul(proofC, BIG.FromBytes(c.Attrs[hiddenIndices[i]]), IdemixUtils.GROUP_ORDER));
                proofSAttrs[i].Mod(IdemixUtils.GROUP_ORDER);
            }

            // include non-revocation proof in signature
            revocationPk       = cri.EpochPk;
            revocationPKSig    = cri.EpochPkSig.ToByteArray();
            epoch              = cri.Epoch;
            nonRevocationProof = prover.GetNonRevocationProof(proofC);
        }
        /**
         * Verify this signature
         *
         * @param disclosure      an array indicating which attributes it expects to be disclosed
         * @param ipk             the issuer public key
         * @param msg             the message that should be signed in this signature
         * @param attributeValues BIG array where attributeValues[i] contains the desired attribute value for the i-th attribute if its disclosed
         * @param rhIndex         index of the attribute that represents the revocation-handle
         * @param revPk           the long term public key used to authenticate CRIs
         * @param epoch           monotonically increasing counter representing a time window
         * @return true iff valid
         */
        // ReSharper disable once ParameterHidesMember
        public bool Verify(bool[] disclosure, IdemixIssuerPublicKey ipk, byte[] msg, BIG[] attributeValues, int rhIndex, KeyPair revPk, int epoch)
        {
            if (disclosure == null || ipk == null || msg == null || attributeValues == null || attributeValues.Length != ipk.AttributeNames.Length || disclosure.Length != ipk.AttributeNames.Length)
            {
                return(false);
            }

            for (int i = 0; i < ipk.AttributeNames.Length; i++)
            {
                if (disclosure[i] && attributeValues[i] == null)
                {
                    return(false);
                }
            }

            int[] hiddenIndices = HiddenIndices(disclosure);
            if (proofSAttrs.Length != hiddenIndices.Length)
            {
                return(false);
            }

            if (aPrime.IsInfinity())
            {
                return(false);
            }

            if (nonRevocationProof.RevocationAlg >= Enum.GetValues(typeof(RevocationAlgorithm)).Length)
            {
                throw new ArgumentException("CRI specifies unknown revocation algorithm");
            }

            RevocationAlgorithm revocationAlgorithm = (RevocationAlgorithm)nonRevocationProof.RevocationAlg;

            if (disclosure[rhIndex])
            {
                throw new ArgumentException("Attribute " + rhIndex + " is disclosed but also used a revocation handle attribute, which should remain hidden");
            }


            // Verify EpochPK
            if (!RevocationAuthority.VerifyEpochPK(revPk, revocationPk, revocationPKSig, epoch, revocationAlgorithm))
            {
                // Signature is based on an invalid revocation epoch public key
                return(false);
            }

            FP12 temp1 = PAIR.Ate(ipk.W, aPrime);
            FP12 temp2 = PAIR.Ate(IdemixUtils.GenG2, aBar);

            temp2.Inverse();
            temp1.mul(temp2);
            if (!PAIR.FExp(temp1).IsUnity())
            {
                return(false);
            }


            ECP t1   = aPrime.Mul2(proofSE, ipk.HRand, proofSR2);
            ECP temp = new ECP();

            temp.Copy(aBar);
            temp.Sub(bPrime);
            t1.Sub(PAIR.G1Mul(temp, proofC));

            ECP t2 = PAIR.G1Mul(ipk.HRand, proofSSPrime);

            t2.Add(bPrime.Mul2(proofSR3, ipk.Hsk, proofSSk));

            for (int i = 0; i < hiddenIndices.Length / 2; i++)
            {
                t2.Add(ipk.HAttrs[hiddenIndices[2 * i]].Mul2(proofSAttrs[2 * i], ipk.HAttrs[hiddenIndices[2 * i + 1]], proofSAttrs[2 * i + 1]));
            }

            if (hiddenIndices.Length % 2 != 0)
            {
                t2.Add(PAIR.G1Mul(ipk.HAttrs[hiddenIndices[hiddenIndices.Length - 1]], proofSAttrs[hiddenIndices.Length - 1]));
            }

            temp = new ECP();
            temp.Copy(IdemixUtils.GenG1);

            for (int i = 0; i < disclosure.Length; i++)
            {
                if (disclosure[i])
                {
                    temp.Add(PAIR.G1Mul(ipk.HAttrs[i], attributeValues[i]));
                }
            }

            t2.Add(PAIR.G1Mul(temp, proofC));

            ECP t3 = ipk.Hsk.Mul2(proofSSk, ipk.HRand, proofSRNym);

            t3.Sub(nym.Mul(proofC));

            // Check with non-revoked-verifier
            INonRevocationVerifier nonRevokedVerifier = NonRevocationVerifier.GetNonRevocationVerifier(revocationAlgorithm);
            int hiddenRHIndex = Array.IndexOf(hiddenIndices, rhIndex);

            if (hiddenRHIndex < 0)
            {
                // rhIndex is not present, set to last index position
                hiddenRHIndex = hiddenIndices.Length;
            }

            BIG proofSRh = proofSAttrs[hiddenRHIndex];

            byte[] nonRevokedProofBytes = nonRevokedVerifier.RecomputeFSContribution(nonRevocationProof, proofC, revocationPk.ToECP2(), proofSRh);
            if (nonRevokedProofBytes == null)
            {
                return(false);
            }


            // create proofData such that it can contain the sign label, 7 elements in G1 (each of size 2*FIELD_BYTES+1),
            // the ipk hash, the disclosure array, and the message
            byte[] proofData = new byte[0];
            proofData = proofData.Append(SIGN_LABEL.ToBytes());
            proofData = proofData.Append(t1.ToBytes());
            proofData = proofData.Append(t2.ToBytes());
            proofData = proofData.Append(t3.ToBytes());
            proofData = proofData.Append(aPrime.ToBytes());
            proofData = proofData.Append(aBar.ToBytes());
            proofData = proofData.Append(bPrime.ToBytes());
            proofData = proofData.Append(nym.ToBytes());
            proofData = proofData.Append(ipk.Hash);
            proofData = proofData.Append(disclosure);
            proofData = proofData.Append(msg);

            BIG cvalue = proofData.HashModOrder();

            byte[] finalProofData = new byte[0];
            finalProofData = finalProofData.Append(cvalue.ToBytes());
            finalProofData = finalProofData.Append(nonce.ToBytes());

            byte[] hashedProofData = finalProofData.HashModOrder().ToBytes();
            return(Enumerable.SequenceEqual(proofC.ToBytes(), hashedProofData));
        }