Beispiel #1
0
        public override GeneralConic2d ToGeneralConic()
        {
            Transform2d    tr    = Transform2d.Scale(MajorRadius) * Transform2d.Rotate(Rotation) * Transform2d.Translate(center.X, center.Y);
            GeneralConic2d elcon = new GeneralConic2d(1, 0, 1.0 / (sigratio * sigratio), 0, 0, -1); //x^2+(1/b)^2-1=0 => unit ellipse

            elcon.Transform(tr);                                                                    //transform conic to position of ellipse
            return(elcon);                                                                          //TODO: optimize this function
        }
Beispiel #2
0
        public override GeneralConic2d ToGeneralConic()
        {
            Transform2d    tr  = Transform2d.Rotate(rotation) * Transform2d.Translate(vertex.X, vertex.Y);
            GeneralConic2d res = new GeneralConic2d(a, 0, 0, 0, -1, 0); //y=ax^2

            res.Transform(tr);
            return(res); //TODO: optimize this function
        }
Beispiel #3
0
 public GeneralConic2d(GeneralConic2d tocopy)
 {
     a = tocopy.a;
     b = tocopy.b;
     c = tocopy.c;
     d = tocopy.d;
     e = tocopy.e;
     f = tocopy.f;
 }
Beispiel #4
0
        public override GeneralConic2d ToGeneralConic()
        {
            //TODO: test this function

            Transform2d    tr     = Transform2d.Scale(majoraxis.Length) * Transform2d.Rotate(Rotation) * Transform2d.Translate(center.X, center.Y);
            GeneralConic2d hypcon = new GeneralConic2d(1, 0, -1.0 / (ratio * ratio), 0, 0, -1); //x^2-(y/b)^2-1=0 => unit

            hypcon.Transform(tr);

            return(hypcon); //TODO: optimize this function
        }
Beispiel #5
0
        public static Point2d[] ParabolaHyperbola(Parabola2d pab, Hyperbola2d hyp) //tested ok
        {
            Transform2d tr = pab.ToStandardPosition;                               //y=x^2

            hyp = new Hyperbola2d(hyp);                                            //copy for transformation
            hyp.Transform(tr);                                                     //to standard space of parabola for stabillity

            GeneralConic2d gencon = hyp.ToGeneralConic();
            var            ptset  = StandardPosParabolaGeneralConic(gencon);

            ptset.Transform(tr.Inversed);
            return(ptset.ToArray());
        }
Beispiel #6
0
        /*private static Point2d[] ConicStandardPosLine(GeneralConic2d con, Line2d lin)
         * {
         *  return LineParamsToPoints(ConicStandardPosLineParametric(con, lin), lin, double.NegativeInfinity, double.PositiveInfinity);
         * }*/

        public static Point2d[] ConicLine(GeneralConic2d con, Line2d lin)
        {
            return(LineParamsToPoints(ConicLineParametric(con, lin), lin, double.NegativeInfinity, double.PositiveInfinity));


            /*
             * Transform2d tr = con.ToStandardPosition;
             *
             * GeneralConic2d stdcon=new GeneralConic2d(con);
             * Line2d stdlin=new Line2d(lin);
             * stdcon.Transform(tr);
             * stdlin.Transform(tr);
             *
             * double[] ts=ConicStandardPosLineParametric(stdcon,stdlin);
             *
             * return LineParamsToPoints(ts, lin, double.NegativeInfinity, double.PositiveInfinity);*/
        }
Beispiel #7
0
        /// <summary>
        /// Intersects a general conic with the curve y=x^2, returning a point set (possibly empty).
        /// This function is used as a helper function for parabola dominant intersection functions.
        /// </summary>
        private static Point2dSet StandardPosParabolaGeneralConic(GeneralConic2d con)   //tested ok
        //c*x^4+b*x^3+(e+a)*x^2+d*x+f
        {
            Point2dSet res = new Point2dSet();

            double[] xs = GetRealRoots(con.C, con.B, con.E + con.A, con.D, con.F);
            if (xs == null)
            {
                return(res);            //no solutions
            }
            foreach (double x in xs)
            {
                double tx = x;
                double ty = x * x;
                res.Add(new Point2d(tx, ty));
            }

            return(res);
        }
Beispiel #8
0
        public static Point2d[] HyperbolaEllipse(Hyperbola2d hyp, Ellipse2d elp)
        {
            //TODO: this is probably more stable intersecting hyperbola with unitcircle. Rewrite.

            Transform2d tr = hyp.ToStandardPosition;

            hyp = new Hyperbola2d(hyp);
            elp = new Ellipse2d(elp);
            hyp.Transform(tr);
            elp.Transform(tr);

            GeneralConic2d hcon = new GeneralConic2d(1, 0.0, -1 / (hyp.B * hyp.B), 0.0, 0.0, -1);

            Point2dSet pset = new Point2dSet();

            pset.AddRange(ConicConic(hcon, elp.ToGeneralConic()));
            pset.Transform(tr.Inversed);
            return(pset.ToArray());
        }
Beispiel #9
0
        public static Point2d[] EllipseEllipse2(Ellipse2d elp1, Ellipse2d elp2)
        {
            //TODO: check if this is better than EllipseEllipse in stabillity and replace it or remove this function

            Transform2d tr = elp1.ToStandardPosition;

            elp2 = new Ellipse2d(elp2); //dont alter the original ellipse
            elp2.Transform(tr);

            elp1 = new Ellipse2d(elp1);
            elp1.Transform(tr);

            GeneralConic2d con1 = new GeneralConic2d(1.0, 0.0, 1 / (elp1.Ratio * elp1.Ratio), 0.0, 0.0, -1.0);
            GeneralConic2d con2 = elp2.ToGeneralConic(); // GeneralConic2d.FromEllipse(elp2);

            Point2dSet pset = new Point2dSet();

            pset.AddRange(ConicConic(con1, con2));
            pset.Transform(tr.Inversed);
            return(pset.ToArray());
        }
Beispiel #10
0
        /// <summary>
        /// Intersect a hyperbola in standard position (a=1.0) with a general conic.
        /// Helper function for other hyperbola intersection functions.
        /// </summary>
        /// <param name="hyp1_b"></param>
        /// <param name="hyp2"></param>
        private static Point2dSet StdHyperbolaConic(double b1, Conic2d con)
        {
            double R = 1.0 / (b1 * b1);

            Point2dSet     res = new Point2dSet();
            GeneralConic2d gc = con.ToGeneralConic();
            double         A = gc.A, B = gc.B, C = gc.C, D = gc.D, E = gc.E, F = gc.F;

            double y4 = A * A * R * R + (2 * A * C - B * B) * R + C * C;
            double y3 = (2 * A * E - 2 * B * D) * R + 2 * C * E;
            double y2 = (-D * D + 2 * A * A + 2 * F * A) * R + E * E + (2 * A + 2 * F) * C - B * B;
            double y1 = (2 * A + 2 * F) * E - 2 * B * D;
            double y0 = A * A + 2 * F * A + F * F - D * D;

            double[] ys = GetRealRoots(y4, y3, y2, y1, y0);
            if (ys == null)
            {
                return(null);
            }

            foreach (double y in ys)
            {
                //two possible x for each y. Try to find the correct one:
                double x    = Math.Sqrt(y * y * R + 1);
                double nx   = -x;
                double err  = A * x * x + B * x * y + C * y * y + D * x + E * y + F;
                double nerr = A * nx * nx + B * nx * y + C * y * y + D * nx + E * y + F;

                if (Math.Abs(err) < Math.Abs(nerr))
                {
                    res.Add(new Point2d(x, y));
                }
                else
                {
                    res.Add(new Point2d(nx, y));
                }
            }

            return(res);
        }
Beispiel #11
0
        /// <summary>
        /// Intersects a line with a conic that is in standard position, that is, not rotated and
        /// centered at 0,0
        /// </summary>
        /// <param name="con"></param>
        /// <param name="lin"></param>
        /// <returns>A list of parameters on line that is intersection points, or null if no intersections</returns>
        private static double[] ConicLineParametric(GeneralConic2d con, Line2d lin)
        {
            //We construct a matrix so that: conic is unrotated (B term=0) and line starts at origo and has length=1.0
            //This is to improve stabillity of the equation

            double invlen = 1.0 / lin.Length;

            if (double.IsInfinity(invlen))
            {
                return(null);    //zero length line does not intersect
            }
            Transform2d tr = Transform2d.Translate(-lin.X1, -lin.Y1) * Transform2d.Rotate(-con.Rotation) * Transform2d.Scale(invlen);

            GeneralConic2d c = new GeneralConic2d(con);  //copy for modification
            double         x1 = lin.X2, y1 = lin.Y2;

            c.Transform(tr);
            tr.Apply(x1, y1, out x1, out y1, true); //transformed line end


            double t2 = y1 * y1 * c.C + x1 * x1 * c.A;
            double t1 = y1 * c.E + x1 * c.D;
            double t0 = c.F;

            double[] ts = RealPolynomial.SolveQuadric(t2, t1, t0);

            return(ts);

            /*double dx=lin.DX;
             * double dy=lin.DY;
             * double x0=lin.X1;
             * double y0=lin.Y1;
             *
             * double t2=con.C*dy*dy+con.A*dx*dx;
             * double t1=2*con.C*dy*y0+2*con.A*dx*x0+dy*con.E+con.D*dx;
             * double t0=con.C*y0*y0+con.E*y0+con.A*x0*x0+con.D*x0+con.F;
             *
             * return RealPolynomial.SolveQuadric(t2, t1, t0, 1e-9);*/
        }
Beispiel #12
0
        public static Point2d[] ConicConic(GeneralConic2d tcon1, GeneralConic2d tcon2)
        {
            // uses the beautiful solution to find the multiplier λ, so that Conic11+λ*Conic2 is
            // a degenerate conic, that is a conic of lines (the 'pencil'). The lines in this conic
            // intersects each of the conics in their common intersection points, thus the problem
            // has been reduced to a Conic-Line intersection problem.
            // This technique is described in book Graphics Gems V, of which we are inspired although
            // this code differs a somewhat from the one in the book.

            // work in standard space for conic 1, gives a more stable computation and speeds up
            // the multiple line-conic intersections later on.
            GeneralConic2d con1 = new GeneralConic2d(tcon1);
            GeneralConic2d con2 = new GeneralConic2d(tcon2);



            //TODO: does not work properly, probably because line extractor does not work correctly in some cases


            //convert conic coefficients to their matrix form
            double a = con1.A, b = con1.B * 0.5, c = con1.C, d = con1.D * 0.5, e = con1.E * 0.5, f = con1.F;
            double A = con2.A, B = con2.B * 0.5, C = con2.C, D = con2.D * 0.5, E = con2.E * 0.5, F = con2.F;


            //TODO: since conic 1 is in standard position, thoose can be simplified: b,d,e terms are always zero
            double c3 = (A * C - B * B) * F - A * E * E + 2 * B * D * E - C * D * D;
            double c2 = (a * C - 2 * b * B + c * A) * F - a * E * E + (2 * b * D + 2 * d * B - 2 * e * A) * E - c * D * D + (2 * e * B - 2 * d * C) * D + f * A * C - f * B * B;
            double c1 = (a * c - b * b) * F + (2 * b * d - 2 * a * e) * E + (2 * b * e - 2 * c * d) * D + (a * f - d * d) * C + (2 * d * e - 2 * b * f) * B + (c * f - e * e) * A;
            double c0 = (a * c - b * b) * f - a * e * e + 2 * b * d * e - c * d * d;

            double[] lambdas2 = RealPolynomial.SolveCubic2(c3, c2, c1, c0); //up to three coefficients that will turn conic sum to degenerate lines
            double[] lambdas  = GetRealRoots(c3, c2, c1, c0);



            if (lambdas == null)
            {
                return(null); //this can never happen on a 3d degree equation but we check it anyway
            }
            Point2dSet res = new Point2dSet();

            foreach (double lambda in lambdas)
            {
                GeneralConic2d pencil = new GeneralConic2d(
                    a + lambda * A,
                    (b + lambda * B) * 2,
                    c + lambda * C,
                    (d + lambda * D) * 2,
                    (e + lambda * E) * 2,
                    f + lambda * F);

                Line2d[] lines = pencil.ToLines();

                if (lines != null)
                {
                    foreach (Line2d lin in lines)
                    { //max 2 lines
                        Point2d[] intpts = ConicLine(con1, lin);
                        if (intpts == null)
                        {
                            continue;
                        }

                        //validate each point satisfying the conic equations (they can be out of range for finite conics such as ellipses)
                        foreach (Point2d pt in intpts)
                        {
                            double x    = pt.X;
                            double y    = pt.Y;
                            double err1 = con1.A * x * x + con1.B * x * y + con1.C * y * y + con1.D * x + con1.E * y + con1.F;
                            if (MathUtil.IsZero(err1, 5.0))
                            {
                                double err2 = con2.A * x * x + con2.B * x * y + con2.C * y * y + con2.D * x + con2.E * y + con2.F;
                                if (MathUtil.IsZero(err2, 5.0))
                                {
                                    res.Add(pt);
                                }
                            }
                        }
                    }
                }
            }

            //res.Transform(tr.Inversed);
            return(res.ToArray());
        }
Beispiel #13
0
        /// <summary>
        /// Gets the line geometries, one or two lines. The type of the conic has to be
        /// Intersecting lines (2 results), Paralell lines (2 results) or Coincident lienes (1 result),
        /// otherwise the result is null.
        /// </summary>
        /// <returns></returns>
        public Line2d[] ToLines()
        {
            // Inspired by line extraction conmat.c from book Graphics Gems V

            double         xx, yy;
            ConicType      type = Type;
            Line2d         tmplin;
            Transform2d    tr;
            GeneralConic2d cpy;


            List <Line2d> res = null;



            double de = B * B * 0.25 - A * C;

            if (MathUtil.IsZero(A) && MathUtil.IsZero(B) && MathUtil.IsZero(C))
            { //single line
                // compute endpoints of the line, avoiding division by zero
                res = new List <Line2d>();
                if (Math.Abs(d) > Math.Abs(e))
                {
                    res.Add(new Line2d(-f / (d), 0.0, -(e + f) / (d), 1.0));
                }
                else
                {
                    res.Add(new Line2d(0.0, -f / (e), 1.0, -(d + f) / (e)));
                }
            }
            else
            {                                                                                              // two lines
                cpy = new GeneralConic2d(this);
                double a = cpy.a, b = cpy.b * 0.5, c = cpy.c, d = cpy.d * 0.5, e = cpy.e * 0.5, f = cpy.f; //get matrix coefficient

                // use the expression for phi that takes atan of the smallest argument
                double phi = (Math.Abs(b + b) < Math.Abs(a - c) ?
                              Math.Atan((b + b) / (a - c)) :
                              MathUtil.Deg360 - Math.Atan((a - c) / (b + b))) / 2.0;

                //phi = cpy.Rotation;

                if (MathUtil.IsZero(de))
                { //parallel lines
                    tr = Transform2d.Rotate(-phi);
                    cpy.Transform(tr);
                    a = cpy.A; b = cpy.B * 0.5; c = cpy.c; d = cpy.d * 0.5; e = cpy.e * 0.5; f = cpy.f; //get matrix coefficient

                    if (Math.Abs(c) < Math.Abs(a))                                                      // vertical
                    {
                        double[] xs = RealPolynomial.SolveQuadric(a, d, f);
                        if (xs != null)
                        {
                            res = new List <Line2d>();
                            foreach (double x in xs)
                            {
                                tmplin = new Line2d(x, -1, x, 1);
                                tmplin.Transform(tr.Inversed);  //back to original spacxe
                                res.Add(tmplin);
                            }
                        }
                    }
                    else //horizontal
                    {
                        double[] ys = RealPolynomial.SolveQuadric(c, e, f, 0.0);
                        if (ys != null)
                        {
                            res = new List <Line2d>();
                            foreach (double y in ys)
                            {
                                tmplin = new Line2d(-1, y, 1, y);
                                tmplin.Transform(tr.Inversed);
                                res.Add(tmplin);
                            }
                        }
                    }
                } //end parallel lines case
                else
                { //crossing lines
                    Point2d center = Center;
                    double  rot    = this.Rotation;
                    tr = Transform2d.Translate(-center.X, -center.Y) * Transform2d.Rotate(-rot);
                    cpy.Transform(tr);
                    a = cpy.A; b = cpy.B * 0.5; c = cpy.c; d = cpy.c * 0.5; e = cpy.e * 0.5; f = cpy.f;

                    res = new List <Line2d>();

                    xx     = Math.Sqrt(Math.Abs(1.0 / a));
                    yy     = Math.Sqrt(Math.Abs(1.0 / c));
                    tr     = tr.Inversed;
                    tmplin = new Line2d(-xx, -yy, xx, yy);
                    tmplin.Transform(tr);
                    res.Add(tmplin);
                    tmplin = new Line2d(new Line2d(-xx, yy, xx, -yy));
                    tmplin.Transform(tr);
                    res.Add(tmplin);
                } //end crossing lines case
            }   //end two lines



            if (res == null || res.Count == 0)
            {
                return(null);
            }

            return(res.ToArray());
        }