Beispiel #1
0
        public void Stop_Started_Stopped()
        {
            var selection  = new EliteSelection();
            var crossover  = new OnePointCrossover(2);
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target     = new GeneticAlgorithm(new Population(100, 199, chromosome),
                                                  new FitnessStub()
            {
                SupportsParallel = false
            }, selection, crossover, mutation);

            target.Termination = new GenerationNumberTermination(10000);

            Parallel.Invoke(
                () => target.Start(),
                () =>
            {
                Thread.Sleep(10);
                Assert.AreEqual(GeneticAlgorithmState.Started, target.State);
                Assert.IsTrue(target.IsRunning);
                target.Stop();
                Thread.Sleep(30);

                Assert.AreEqual(GeneticAlgorithmState.Stopped, target.State);
                Assert.IsFalse(target.IsRunning);
            });

            Assert.Less(target.Population.Generations.Count, 10000);
            Assert.Greater(target.TimeEvolving.TotalMilliseconds, 8.8);
        }
Beispiel #2
0
        public void Resume_TerminationReachedAndTerminationNotChanged_Exception()
        {
            var selection  = new EliteSelection();
            var crossover  = new OnePointCrossover(2);
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target     = new GeneticAlgorithm(new Population(100, 199, chromosome),
                                                  new FitnessStub()
            {
                SupportsParallel = false
            }, selection, crossover, mutation);

            target.Termination = new GenerationNumberTermination(10);
            target.Start();
            Assert.AreEqual(10, target.Population.Generations.Count);
            var timeEvolving = target.TimeEvolving.Ticks;

            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);

            Assert.Catch <InvalidOperationException>(() =>
            {
                target.Resume();
            }, "Attempt to resume a genetic algorithm with a termination (GenerationNumberTermination (HasReached: True)) already reached. Please, specify a new termination or extend the current one.");
        }
Beispiel #3
0
        public void Start_ParallelManySlowFitness_Timeout()
        {
            var taskExecutor = new ParallelTaskExecutor();

            taskExecutor.MinThreads = 100;
            taskExecutor.MaxThreads = 100;
            taskExecutor.Timeout    = TimeSpan.FromMilliseconds(1000);

            var selection  = new RouletteWheelSelection();
            var crossover  = new OnePointCrossover(1);
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target     = new GeneticAlgorithm(new Population(100, 150, chromosome),
                                                  new FitnessStub()
            {
                SupportsParallel = true, ParallelSleep = 1500
            }, selection, crossover, mutation);

            target.TaskExecutor = taskExecutor;

            Assert.Catch <TimeoutException>(() =>
            {
                target.Start();
            }, "The fitness evaluation rech the 00:00:01 timeout.");

            Assert.IsFalse(target.IsRunning);
            Assert.AreEqual(GeneticAlgorithmState.Stopped, target.State);
        }
Beispiel #4
0
        public void Start_TerminationReached_TerminationReachedEventRaised()
        {
            var selection  = new EliteSelection();
            var crossover  = new OnePointCrossover(2);
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target     = new GeneticAlgorithm(new Population(100, 199, chromosome),
                                                  new FitnessStub()
            {
                SupportsParallel = false
            }, selection, crossover, mutation);

            target.Population.GenerationStrategy = new TrackingGenerationStrategy();
            target.Termination = new GenerationNumberTermination(1);

            var raised = false;

            target.TerminationReached += (e, a) =>
            {
                raised = true;
            };

            target.Start();

            Assert.IsTrue(raised);
        }
Beispiel #5
0
        public void Start_InvalidFitnessEvaluateResult_Exception()
        {
            var selection  = new RouletteWheelSelection();
            var crossover  = new OnePointCrossover(1);
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var fitness    = MockRepository.GenerateMock <IFitness>();

            fitness.Expect(f => f.Evaluate(null)).IgnoreArguments().Return(1.1);

            var target = new GeneticAlgorithm(
                new Population(20, 20, chromosome),
                fitness, selection, crossover, mutation);

            ExceptionAssert.IsThrowing(new FitnessException(fitness, "The {0}.Evaluate returns a fitness with value 1.1. The fitness value should be between 0.0 and 1.0.".With(fitness.GetType())), () => {
                target.Start();
            });

            fitness = MockRepository.GenerateMock <IFitness>();
            fitness.Expect(f => f.Evaluate(null)).IgnoreArguments().Return(-0.1);

            target = new GeneticAlgorithm(
                new Population(20, 20, chromosome),
                fitness, selection, crossover, mutation);

            ExceptionAssert.IsThrowing(new FitnessException(fitness, "The {0}.Evaluate returns a fitness with value -0.1. The fitness value should be between 0.0 and 1.0.".With(fitness.GetType())), () =>
            {
                target.Start();
            });
        }
Beispiel #6
0
        public void Resume_Stopped_Resumed()
        {
            var selection  = new EliteSelection();
            var crossover  = new OnePointCrossover(2);
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target     = new GeneticAlgorithm(new Population(100, 199, chromosome),
                                                  new FitnessStub()
            {
                SupportsParallel = false
            }, selection, crossover, mutation);

            target.Termination = new TimeEvolvingTermination(TimeSpan.FromMilliseconds(1000));

            Parallel.Invoke(
                () => target.Start(),
                () =>
            {
                Thread.Sleep(30);
                target.Stop();
                Thread.Sleep(30);
                Assert.AreEqual(GeneticAlgorithmState.Stopped, target.State);
                Assert.IsFalse(target.IsRunning);
            });

            Parallel.Invoke(
                () => target.Resume(),
                () =>
            {
                Thread.Sleep(30);
                Assert.AreEqual(GeneticAlgorithmState.Resumed, target.State);
                Assert.IsTrue(target.IsRunning);
            });
        }
Beispiel #7
0
        public void Resume_TerminationReachedAndTerminationExtend_Resumed()
        {
            var selection  = new EliteSelection();
            var crossover  = new OnePointCrossover(2);
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target     = new GeneticAlgorithm(new Population(100, 199, chromosome),
                                                  new FitnessStub()
            {
                SupportsParallel = false
            }, selection, crossover, mutation);

            target.Population.GenerationStrategy = new TrackingGenerationStrategy();
            target.Termination = new GenerationNumberTermination(100);
            target.Start();
            Assert.AreEqual(100, target.Population.Generations.Count);
            var timeEvolving = target.TimeEvolving.Ticks;

            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);

            target.Termination = new GenerationNumberTermination(200);
            target.Resume();
            Assert.AreEqual(target.Population.Generations.Count, 200);
            Assert.Less(timeEvolving, target.TimeEvolving.Ticks);
            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);

            target.Termination = new GenerationNumberTermination(300);
            target.Resume();
            Assert.AreEqual(target.Population.Generations.Count, 300);
            Assert.Less(timeEvolving, target.TimeEvolving.Ticks);
            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);
        }
        public void Start_ParallelManyGenerations_Optimization()
        {
            var taskExecutor = new ParallelTaskExecutor();

            taskExecutor.MinThreads = 100;
            taskExecutor.MaxThreads = 100;

            var selection  = new EliteSelection();
            var crossover  = new OnePointCrossover(1);
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();

            FlowAssert.IsAtLeastOneAttemptOk(20, () =>
            {
                var target = new GeneticAlgorithm(new Population(100, 150, chromosome),
                                                  new FitnessStub()
                {
                    SupportsParallel = true
                }, selection, crossover, mutation);
                target.TaskExecutor = taskExecutor;

                Assert.AreEqual(GeneticAlgorithmState.NotStarted, target.State);
                Assert.IsFalse(target.IsRunning);

                target.Start();

                Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
                Assert.IsFalse(target.IsRunning);
                Assert.IsTrue(target.Population.CurrentGeneration.Chromosomes.Count >= 100);
                Assert.IsTrue(target.Population.CurrentGeneration.Chromosomes.Count <= 150);
                Assert.IsNotNull(target.Population.BestChromosome);
                Assert.IsTrue(target.Population.BestChromosome.Fitness >= 0.9);
                Assert.IsTrue(target.Population.Generations.Count > 0);
            });

            FlowAssert.IsAtLeastOneAttemptOk(20, () =>
            {
                var target = new GeneticAlgorithm(new Population(100, 150, chromosome),
                                                  new FitnessStub()
                {
                    SupportsParallel = true
                }, selection, crossover, mutation);
                target.TaskExecutor = taskExecutor;
                target.Start();
                Assert.IsTrue(target.Population.CurrentGeneration.Chromosomes.Count >= 100);
                Assert.IsTrue(target.Population.CurrentGeneration.Chromosomes.Count <= 150);
                Assert.IsNotNull(target.Population.BestChromosome);
                Assert.IsTrue(target.Population.BestChromosome.Fitness >= 0.9);
                Assert.IsTrue(target.Population.Generations.Count > 0);
            });
        }
        public void Start_FitnessEvaluationFailed_FitnessException()
        {
            var selection  = new RouletteWheelSelection();
            var crossover  = new OnePointCrossover(1);
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var fitness    = new FuncFitness((c) => throw new Exception("TEST"));

            var target = new GeneticAlgorithm(new Population(100, 150, chromosome), fitness, selection, crossover, mutation);

            Assert.Catch <FitnessException>(target.Start);

            Assert.IsFalse(target.IsRunning);
            Assert.AreEqual(GeneticAlgorithmState.Stopped, target.State);
        }
        public void Stop_NotStarted_Exception()
        {
            var selection  = new EliteSelection();
            var crossover  = new OnePointCrossover(2);
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target     = new GeneticAlgorithm(new Population(100, 199, chromosome),
                                                  new FitnessStub()
            {
                SupportsParallel = false
            }, selection, crossover, mutation);

            ExceptionAssert.IsThrowing(new InvalidOperationException("Attempt to stop a genetic algorithm which was not yet started."), () =>
            {
                target.Stop();
            });
        }
        public void Resume_NotStarted_Exception()
        {
            var selection  = new EliteSelection();
            var crossover  = new OnePointCrossover(2);
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target     = new GeneticAlgorithm(new Population(100, 199, chromosome),
                                                  new FitnessStub()
            {
                SupportsParallel = false
            }, selection, crossover, mutation);

            Assert.Catch <InvalidOperationException>(() =>
            {
                target.Resume();
            }, "Attempt to resume a genetic algorithm which was not yet started.");
        }
        public void Start_TplGAs_Fast()
        {
            // GA 1
            var selection1  = new EliteSelection();
            var crossover1  = new OnePointCrossover(2);
            var mutation1   = new UniformMutation();
            var chromosome1 = new ChromosomeStub();
            var ga1         = new GeneticAlgorithm(new TplPopulation(100, 199, chromosome1),
                                                   new FitnessStub()
            {
                SupportsParallel = false
            }, selection1, crossover1, mutation1);

            ga1.OperatorsStrategy = new TplOperatorsStrategy();

            ga1.Population.GenerationStrategy = new TrackingGenerationStrategy();
            ga1.Termination = new GenerationNumberTermination(1000);

            // GA 2
            var selection2  = new EliteSelection();
            var crossover2  = new OnePointCrossover(2);
            var mutation2   = new UniformMutation();
            var chromosome2 = new ChromosomeStub();
            var ga2         = new GeneticAlgorithm(new TplPopulation(100, 199, chromosome2),
                                                   new FitnessStub()
            {
                SupportsParallel = false
            }, selection2, crossover2, mutation2);

            ga2.OperatorsStrategy = new TplOperatorsStrategy();

            ga2.Population.GenerationStrategy = new TrackingGenerationStrategy();
            ga2.Termination = new GenerationNumberTermination(1000);

            Parallel.Invoke(
                () => ga1.Start(),
                () => ga2.Start());


            Assert.AreEqual(1000, ga1.Population.Generations.Count);
            Assert.AreEqual(1000, ga2.Population.Generations.Count);
        }
        public void Start_ManyCalls_NewEvolutions()
        {
            RandomizationProvider.Current = new BasicRandomization();
            var selection  = new EliteSelection();
            var crossover  = new OnePointCrossover(2);
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target     = new GeneticAlgorithm(new Population(100, 199, chromosome),
                                                  new FitnessStub()
            {
                SupportsParallel = false
            }, selection, crossover, mutation);

            target.Population.GenerationStrategy = new TrackingGenerationStrategy();
            target.Termination = new GenerationNumberTermination(1000);

            Assert.AreEqual(GeneticAlgorithmState.NotStarted, target.State);
            Assert.IsFalse(target.IsRunning);

            target.Start();

            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);
            var lastTimeEvolving = target.TimeEvolving.Ticks;

            Assert.AreEqual(1000, target.Population.Generations.Count);
            Assert.Greater(target.TimeEvolving.TotalMilliseconds, 1);

            target.Start();

            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);
            Assert.AreEqual(1000, target.Population.Generations.Count);
            Assert.AreNotEqual(lastTimeEvolving, target.TimeEvolving.Ticks);

            target.Start();

            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);
            Assert.AreEqual(1000, target.Population.Generations.Count);
            Assert.AreNotEqual(lastTimeEvolving, target.TimeEvolving.Ticks);
        }
        public void Start_ParallelManyGenerations_Faster()
        {
            var selection  = new EliteSelection();
            var crossover  = new OnePointCrossover(2);
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target     = new GeneticAlgorithm(new Population(100, 100, chromosome),
                                                  new FitnessStub()
            {
                SupportsParallel = true
            }, selection, crossover, mutation);

            target.Population.GenerationStrategy = new TrackingGenerationStrategy();
            target.Termination  = new GenerationNumberTermination(100);
            target.TaskExecutor = new ParallelTaskExecutor();
            target.Start();

            Assert.AreEqual(100, target.Population.Generations.Count);
            Assert.Greater(target.TimeEvolving.TotalMilliseconds, 1);
        }
        public void Start_ThreeParentCrossover_KeepsMinSizePopulation()
        {
            var selection  = new EliteSelection();
            var crossover  = new ThreeParentCrossover();
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target     = new GeneticAlgorithm(new Population(100, 199, chromosome),
                                                  new FitnessStub()
            {
                SupportsParallel = false
            }, selection, crossover, mutation);

            target.Termination = new GenerationNumberTermination(100);

            target.Start();

            Assert.AreEqual(100, target.Population.Generations.Count);

            Assert.IsTrue(target.Population.Generations.All(g => g.Chromosomes.Count >= 100));
        }
Beispiel #16
0
        public void Start_NotParallelManyGenerations_Fast()
        {
            var selection  = new EliteSelection();
            var crossover  = new OnePointCrossover(2);
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target     = new GeneticAlgorithm(new Population(100, 199, chromosome),
                                                  new FitnessStub()
            {
                SupportsParallel = false
            }, selection, crossover, mutation);

            target.Termination = new GenerationNumberTermination(100);

            TimeAssert.LessThan(300, () => {
                target.Start();
            });

            Assert.AreEqual(100, target.Population.Generations.Count);
            Assert.Greater(target.TimeEvolving.TotalMilliseconds, 1);
        }
        public void Start_NotParallelManyGenerations_Optimization()
        {
            var selection  = new EliteSelection();
            var crossover  = new OnePointCrossover(2);
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target     = new GeneticAlgorithm(new Population(50, 50, chromosome),
                                                  new FitnessStub()
            {
                SupportsParallel = false
            }, selection, crossover, mutation);

            target.Population.GenerationStrategy = new TrackingGenerationStrategy();

            Assert.IsInstanceOf <EliteSelection>(target.Selection);
            Assert.IsInstanceOf <OnePointCrossover>(target.Crossover);
            Assert.IsInstanceOf <UniformMutation>(target.Mutation);

            target.Termination = new GenerationNumberTermination(25);
            Assert.AreEqual(GeneticAlgorithmState.NotStarted, target.State);
            Assert.IsFalse(target.IsRunning);

            target.Start();

            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);

            Assert.AreEqual(25, target.Population.Generations.Count);

            var lastFitness = 0.0;

            foreach (var g in target.Population.Generations)
            {
                Assert.GreaterOrEqual(g.BestChromosome.Fitness.Value, lastFitness);
                lastFitness = g.BestChromosome.Fitness.Value;
            }

            Assert.GreaterOrEqual(lastFitness, 0.8);
            Assert.AreEqual(lastFitness, target.BestChromosome.Fitness);
        }
        public void Start_ManyCallsTerminationChanged_NewEvolutions()
        {
            var selection  = new EliteSelection();
            var crossover  = new OnePointCrossover(2);
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target     = new GeneticAlgorithm(new Population(100, 199, chromosome),
                                                  new FitnessStub()
            {
                SupportsParallel = false
            }, selection, crossover, mutation);

            target.Population.GenerationStrategy = new TrackingGenerationStrategy();
            target.Termination = new GenerationNumberTermination(500);

            target.Start();
            var lastTimeEvolving = target.TimeEvolving.TotalMilliseconds;

            Assert.AreEqual(500, target.Population.Generations.Count);
            Assert.Greater(target.TimeEvolving.TotalMilliseconds, 1);
            Assert.Less(target.TimeEvolving.TotalMilliseconds, 1500, "Time evolving should be less than 1000ms");
            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);

            target.Termination = new GenerationNumberTermination(100);
            target.Start();
            Assert.AreEqual(100, target.Population.Generations.Count);
            Assert.Less(target.TimeEvolving.TotalMilliseconds, lastTimeEvolving, "Time evolving 50 generations should be less than 100-199 generations");
            lastTimeEvolving = target.TimeEvolving.TotalMilliseconds;
            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);

            target.Termination = new GenerationNumberTermination(25);
            target.Start();
            Assert.AreEqual(25, target.Population.Generations.Count);
            Assert.Less(target.TimeEvolving.TotalMilliseconds, lastTimeEvolving);
            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);
        }
        public void Start_ParallelManyGenerations_Faster()
        {
            var selection  = new EliteSelection();
            var crossover  = new OnePointCrossover(2);
            var mutation   = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var fitness    = new FitnessStub()
            {
                SupportsParallel = true, ParallelSleep = 1
            };
            var generationStrategy = new TrackingGenerationStrategy();
            var termination        = new GenerationNumberTermination(100);
            // we test linear first
            var target = new GeneticAlgorithm(new Population(10, 10, chromosome), fitness
                                              , selection, crossover, mutation);

            target.Population.GenerationStrategy = generationStrategy;
            target.Termination  = termination;
            target.TaskExecutor = new LinearTaskExecutor();
            target.Start();
            Assert.AreEqual(100, target.Population.Generations.Count);
            var linearTime = target.TimeEvolving.TotalMilliseconds;

            //then parallel

            target = new GeneticAlgorithm(new Population(10, 10, chromosome), fitness
                                          , selection, crossover, mutation);
            target.Population.GenerationStrategy = generationStrategy;
            target.Termination  = termination;
            target.TaskExecutor = new TplTaskExecutor();
            target.Start();
            Assert.AreEqual(100, target.Population.Generations.Count);

            var parallelTime = target.TimeEvolving.TotalMilliseconds;


            Assert.Less(parallelTime, linearTime);
        }
        public void Start_InvalidFitnessEvaluateResult_Exception()
        {
            var selection = new RouletteWheelSelection();
            var crossover = new OnePointCrossover(1);
            var mutation = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var fitness = MockRepository.GenerateMock<IFitness>();
            fitness.Expect(f => f.Evaluate(null)).IgnoreArguments().Return(1.1);

            var target = new GeneticAlgorithm(
                new Population(20, 20, chromosome),
                fitness, selection, crossover, mutation);

            ExceptionAssert.IsThrowing(new FitnessException(fitness, "The {0}.Evaluate returns a fitness with value 1.1. The fitness value should be between 0.0 and 1.0.".With(fitness.GetType())), () =>
            {
                target.Start();
            });

            fitness = MockRepository.GenerateMock<IFitness>();
            fitness.Expect(f => f.Evaluate(null)).IgnoreArguments().Return(-0.1);

            target = new GeneticAlgorithm(
                new Population(20, 20, chromosome),
                fitness, selection, crossover, mutation);

            ExceptionAssert.IsThrowing(new FitnessException(fitness, "The {0}.Evaluate returns a fitness with value -0.1. The fitness value should be between 0.0 and 1.0.".With(fitness.GetType())), () =>
                                       {
                                           target.Start();
                                       });
        }
        public void Start_ManyCallsTerminationChanged_NewEvolutions()
        {
            var selection = new EliteSelection();
            var crossover = new OnePointCrossover(2);
            var mutation = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target = new GeneticAlgorithm(new Population(100, 199, chromosome),
                    new FitnessStub() { SupportsParallel = false }, selection, crossover, mutation);

            target.Termination = new GenerationNumberTermination(100);

            target.Start();
            var lastTimeEvolving = target.TimeEvolving.TotalMilliseconds;
            Assert.AreEqual(100, target.Population.Generations.Count);
            Assert.Greater(target.TimeEvolving.TotalMilliseconds, 1);
            Assert.Less(target.TimeEvolving.TotalMilliseconds, 1000);
            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);

            target.Termination = new GenerationNumberTermination(50);
            target.Start();
            Assert.AreEqual(50, target.Population.Generations.Count);
            Assert.Less(target.TimeEvolving.TotalMilliseconds, lastTimeEvolving);
            lastTimeEvolving = target.TimeEvolving.TotalMilliseconds;
            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);

            target.Termination = new GenerationNumberTermination(25);
            target.Start();
            Assert.AreEqual(25, target.Population.Generations.Count);
            Assert.Less(target.TimeEvolving.TotalMilliseconds, lastTimeEvolving);
            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);
        }
        public void Start_ParallelManySlowFitness_Timeout()
        {
            var taskExecutor = new SmartThreadPoolTaskExecutor();
            taskExecutor.MinThreads = 100;
            taskExecutor.MaxThreads = 100;
            taskExecutor.Timeout = TimeSpan.FromMilliseconds(1000);

            var selection = new RouletteWheelSelection();
            var crossover = new OnePointCrossover(1);
            var mutation = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target = new GeneticAlgorithm(new Population(100, 150, chromosome),
                new FitnessStub() { SupportsParallel = true, ParallelSleep = 1500 }, selection, crossover, mutation);
            target.TaskExecutor = taskExecutor;

            ExceptionAssert.IsThrowing(new TimeoutException("The fitness evaluation rech the 00:00:01 timeout."), () =>
            {
                target.Start();
            });

            Assert.IsFalse(target.IsRunning);
            Assert.AreEqual(GeneticAlgorithmState.Stopped, target.State);
        }
        public void Start_ParallelManyGenerations_Optimization()
        {
            var taskExecutor = new SmartThreadPoolTaskExecutor();
            taskExecutor.MinThreads = 100;
            taskExecutor.MaxThreads = 100;

            var selection = new EliteSelection();
            var crossover = new OnePointCrossover(1);
            var mutation = new UniformMutation();
            var chromosome = new ChromosomeStub();

            FlowAssert.IsAtLeastOneAttemptOk(20, () =>
            {
                var target = new GeneticAlgorithm(new Population(100, 150, chromosome),
                new FitnessStub() { SupportsParallel = true }, selection, crossover, mutation);
                target.TaskExecutor = taskExecutor;

                Assert.AreEqual(GeneticAlgorithmState.NotStarted, target.State);
                Assert.IsFalse(target.IsRunning);

                target.Start();

                Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
                Assert.IsFalse(target.IsRunning);
                Assert.IsTrue(target.Population.CurrentGeneration.Chromosomes.Count >= 100);
                Assert.IsTrue(target.Population.CurrentGeneration.Chromosomes.Count <= 150);
                Assert.IsNotNull(target.Population.BestChromosome);
                Assert.IsTrue(target.Population.BestChromosome.Fitness >= 0.9);
                Assert.IsTrue(target.Population.Generations.Count > 0);
            });

            FlowAssert.IsAtLeastOneAttemptOk(20, () =>
            {
                var target = new GeneticAlgorithm(new Population(100, 150, chromosome),
                new FitnessStub() { SupportsParallel = true }, selection, crossover, mutation);
                target.TaskExecutor = taskExecutor;
                target.Start();
                Assert.IsTrue(target.Population.CurrentGeneration.Chromosomes.Count >= 100);
                Assert.IsTrue(target.Population.CurrentGeneration.Chromosomes.Count <= 150);
                Assert.IsNotNull(target.Population.BestChromosome);
                Assert.IsTrue(target.Population.BestChromosome.Fitness >= 0.9);
                Assert.IsTrue(target.Population.Generations.Count > 0);
            });
        }
        public void Start_ParallelGAs_Fast()
        {
            // GA 1     
            var selection1 = new EliteSelection();
            var crossover1 = new OnePointCrossover(2);
            var mutation1 = new UniformMutation();
            var chromosome1 = new ChromosomeStub();
            var ga1 = new GeneticAlgorithm(new Population(100, 199, chromosome1),
                    new FitnessStub() { SupportsParallel = false }, selection1, crossover1, mutation1);

            ga1.Termination = new GenerationNumberTermination(1000);

            // GA 2     
            var selection2 = new EliteSelection();
            var crossover2 = new OnePointCrossover(2);
            var mutation2 = new UniformMutation();
            var chromosome2 = new ChromosomeStub();
            var ga2 = new GeneticAlgorithm(new Population(100, 199, chromosome2),
                    new FitnessStub() { SupportsParallel = false }, selection2, crossover2, mutation2);

            ga2.Termination = new GenerationNumberTermination(1000);

            Parallel.Invoke(
                () => ga1.Start(),
                () => ga2.Start());


            Assert.AreEqual(1000, ga1.Population.Generations.Count);
            Assert.AreEqual(1000, ga2.Population.Generations.Count);
        }
        public void Start_NotParallelManyGenerations_Fast()
        {
            var selection = new EliteSelection();
            var crossover = new OnePointCrossover(2);
            var mutation = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target = new GeneticAlgorithm(new Population(100, 199, chromosome),
                    new FitnessStub() { SupportsParallel = false }, selection, crossover, mutation);

            target.Termination = new GenerationNumberTermination(100);

            TimeAssert.LessThan(30000, () =>
            {
                target.Start();
            });

            Assert.AreEqual(100, target.Population.Generations.Count);
            Assert.Greater(target.TimeEvolving.TotalMilliseconds, 1);
        }
        public void Start_ThreeParentCrossover_KeepsMinSizePopulation()
        {
            var selection = new EliteSelection();
            var crossover = new ThreeParentCrossover();
            var mutation = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target = new GeneticAlgorithm(new Population(100, 199, chromosome),
                    new FitnessStub() { SupportsParallel = false }, selection, crossover, mutation);

            target.Termination = new GenerationNumberTermination(100);

            target.Start();

            Assert.AreEqual(100, target.Population.Generations.Count);

            Assert.IsTrue(target.Population.Generations.All(g => g.Chromosomes.Count >= 100));
        }
        public void Start_TerminationReached_TerminationReachedEventRaised()
        {
            var selection = new EliteSelection();
            var crossover = new OnePointCrossover(2);
            var mutation = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target = new GeneticAlgorithm(new Population(100, 199, chromosome),
                    new FitnessStub() { SupportsParallel = false }, selection, crossover, mutation);

            target.Termination = new GenerationNumberTermination(1);
            var raised = false;
            target.TerminationReached += (e, a) =>
            {
                raised = true;
            };

            target.Start();

            Assert.IsTrue(raised);
        }
        public void Stop_Started_Stopped()
        {
            var selection = new EliteSelection();
            var crossover = new OnePointCrossover(2);
            var mutation = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target = new GeneticAlgorithm(new Population(100, 199, chromosome),
                    new FitnessStub() { SupportsParallel = false }, selection, crossover, mutation);

            target.Termination = new GenerationNumberTermination(10000);

            Parallel.Invoke(
            () => target.Start(),
            () =>
            {
                Thread.Sleep(10);
                Assert.AreEqual(GeneticAlgorithmState.Started, target.State);
                Assert.IsTrue(target.IsRunning);
                target.Stop();
                Thread.Sleep(30);

                Assert.AreEqual(GeneticAlgorithmState.Stopped, target.State);
                Assert.IsFalse(target.IsRunning);
            });

            Assert.Less(target.Population.Generations.Count, 10000);
            Assert.Greater(target.TimeEvolving.TotalMilliseconds, 8.8);
        }
        public void Start_ManyCalls_NewEvolutions()
        {
            RandomizationProvider.Current = new BasicRandomization();
            var selection = new EliteSelection();
            var crossover = new OnePointCrossover(2);
            var mutation = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target = new GeneticAlgorithm(new Population(100, 199, chromosome),
                    new FitnessStub() { SupportsParallel = false }, selection, crossover, mutation);

            target.Termination = new GenerationNumberTermination(1000);
            Assert.AreEqual(GeneticAlgorithmState.NotStarted, target.State);
            Assert.IsFalse(target.IsRunning);

            target.Start();

            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);
            var lastTimeEvolving = target.TimeEvolving.Ticks;
            Assert.AreEqual(1000, target.Population.Generations.Count);
            Assert.Greater(target.TimeEvolving.TotalMilliseconds, 1);

            target.Start();

            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);
            Assert.AreEqual(1000, target.Population.Generations.Count);
            Assert.AreNotEqual(lastTimeEvolving, target.TimeEvolving.Ticks);

            target.Start();

            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);
            Assert.AreEqual(1000, target.Population.Generations.Count);
            Assert.AreNotEqual(lastTimeEvolving, target.TimeEvolving.Ticks);
        }
        public void Start_NotParallelManyGenerations_Optimization()
        {
            var selection = new EliteSelection();
            var crossover = new OnePointCrossover(2);
            var mutation = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target = new GeneticAlgorithm(new Population(50, 50, chromosome),
                new FitnessStub() { SupportsParallel = false }, selection, crossover, mutation);

            Assert.IsInstanceOf<EliteSelection>(target.Selection);
            Assert.IsInstanceOf<OnePointCrossover>(target.Crossover);
            Assert.IsInstanceOf<UniformMutation>(target.Mutation);

            target.Termination = new GenerationNumberTermination(25);
            Assert.AreEqual(GeneticAlgorithmState.NotStarted, target.State);
            Assert.IsFalse(target.IsRunning);

            target.Start();

            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);

            Assert.AreEqual(25, target.Population.Generations.Count);

            var lastFitness = 0.0;

            foreach (var g in target.Population.Generations)
            {
                Assert.GreaterOrEqual(g.BestChromosome.Fitness.Value, lastFitness);
                lastFitness = g.BestChromosome.Fitness.Value;
            }

            Assert.GreaterOrEqual(lastFitness, 0.8);
            Assert.AreEqual(lastFitness, target.BestChromosome.Fitness);
        }
        public void Resume_TerminationReachedAndTerminationExtend_Resumed()
        {
            var selection = new EliteSelection();
            var crossover = new OnePointCrossover(2);
            var mutation = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target = new GeneticAlgorithm(new Population(100, 199, chromosome),
                    new FitnessStub() { SupportsParallel = false }, selection, crossover, mutation);

            target.Termination = new GenerationNumberTermination(100);
            target.Start();
            Assert.AreEqual(target.Population.Generations.Count, 100);
            var timeEvolving = target.TimeEvolving.Ticks;
            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);

            target.Termination = new GenerationNumberTermination(200);
            target.Resume();
            Assert.AreEqual(target.Population.Generations.Count, 200);
            Assert.Less(timeEvolving, target.TimeEvolving.Ticks);
            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);

            target.Termination = new GenerationNumberTermination(300);
            target.Resume();
            Assert.AreEqual(target.Population.Generations.Count, 300);
            Assert.Less(timeEvolving, target.TimeEvolving.Ticks);
            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);
        }
        public void Resume_TerminationReachedAndTerminationNotChanged_Exception()
        {
            var selection = new EliteSelection();
            var crossover = new OnePointCrossover(2);
            var mutation = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target = new GeneticAlgorithm(new Population(100, 199, chromosome),
                    new FitnessStub() { SupportsParallel = false }, selection, crossover, mutation);

            target.Termination = new GenerationNumberTermination(10);
            target.Start();
            Assert.AreEqual(10, target.Population.Generations.Count);
            var timeEvolving = target.TimeEvolving.Ticks;
            Assert.AreEqual(GeneticAlgorithmState.TerminationReached, target.State);
            Assert.IsFalse(target.IsRunning);

            ExceptionAssert.IsThrowing(new InvalidOperationException("Attempt to resume a genetic algorithm with a termination (GenerationNumberTermination (HasReached: True)) already reached. Please, specify a new termination or extend the current one."), () =>
            {
                target.Resume();
            });
        }
        public void Resume_Stopped_Resumed()
        {
            var selection = new EliteSelection();
            var crossover = new OnePointCrossover(2);
            var mutation = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target = new GeneticAlgorithm(new Population(100, 199, chromosome),
                    new FitnessStub() { SupportsParallel = false }, selection, crossover, mutation);

            target.Termination = new TimeEvolvingTermination(TimeSpan.FromMilliseconds(10000));
            target.TaskExecutor = new SmartThreadPoolTaskExecutor();

            var stoppedCount = 0;
            target.Stopped += (e, a) =>
            {
                Assert.AreEqual(GeneticAlgorithmState.Stopped, target.State);
                Assert.IsFalse(target.IsRunning);
                stoppedCount++;
            };

            Parallel.Invoke(
            () => target.Start(),
            () =>
            {
                Thread.Sleep(500);
                target.Stop();
            });

            Thread.Sleep(2000);

            Parallel.Invoke(
                () => target.Resume(),
                () =>
                {
                    Thread.Sleep(2000);
                    Assert.AreEqual(GeneticAlgorithmState.Resumed, target.State);
                    Assert.IsTrue(target.IsRunning);
                });

            Assert.AreEqual(1, stoppedCount);
        }
        public void Resume_NotStarted_Exception()
        {
            var selection = new EliteSelection();
            var crossover = new OnePointCrossover(2);
            var mutation = new UniformMutation();
            var chromosome = new ChromosomeStub();
            var target = new GeneticAlgorithm(new Population(100, 199, chromosome),
                    new FitnessStub() { SupportsParallel = false }, selection, crossover, mutation);

            ExceptionAssert.IsThrowing(new InvalidOperationException("Attempt to resume a genetic algorithm which was not yet started."), () =>
            {
                target.Resume();
            });
        }