Beispiel #1
0
        private static Tuple <int, double, double> SimulatedAnnealingExp(Fitness value, int count)
        {
            var historicalFitnesses = Enumerable.Range(1, count).Select(f => new Fitness(f)).Reverse().ToList();
            var index = historicalFitnesses.BinarySearch(value);

            if (index < 0)
            {
                index = ~index;
            }
            var difference        = historicalFitnesses.Count - index;
            var proportionSimilar = (double)difference / historicalFitnesses.Count;
            var exp = Math.Exp(-proportionSimilar);

            return(new Tuple <int, double, double>(index, proportionSimilar, exp));
        }
Beispiel #2
0
        private static void Generate(int diagonalSize, int?maxAge)
        {
            var watch = Stopwatch.StartNew();

            var nSquared    = diagonalSize * diagonalSize;
            var geneSet     = Enumerable.Range(1, nSquared).ToArray();
            var expectedSum = diagonalSize * (nSquared + 1) / 2;
            var geneIndexes = Enumerable.Range(0, geneSet.Length).ToArray();

            Fitness FnGetFitness(IReadOnlyList <int> genes) => GetFitness(genes, diagonalSize, expectedSum);
            void FnDisplay(Chromosome <int, Fitness> candidate) => Display(candidate, watch, diagonalSize);
            void FnMutate(List <int> genes) => Mutate(genes, geneIndexes);
            List <int> FnCreate() => geneSet.OrderBy(i => Rand.Random.Next(geneSet.Length)).ToList();

            var optimalValue = new Fitness(0);
            var best         = Genetic <int, Fitness> .GetBest(FnGetFitness, nSquared, optimalValue, geneSet, FnDisplay, FnMutate,
                                                               FnCreate, maxAge);

            Assert.IsTrue(optimalValue.CompareTo(best.Fitness) <= 0);
        }