// Token: 0x0600349C RID: 13468 RVA: 0x000E5940 File Offset: 0x000E3B40
 public static void MapSolverOutput(Core.Chain chain)
 {
     for (int i = 0; i < chain.joints.Count - 1; i++)
     {
         Vector3    source = chain.joints[i + 1].pos - chain.joints[i].pos;
         Vector3    target = GenericMath.TransformVector(chain.joints[i].localAxis, chain.joints[i].rot);
         Quaternion qA     = GenericMath.RotateFromTo(source, target);
         chain.joints[i].rot = GenericMath.ApplyQuaternion(qA, chain.joints[i].rot);
         chain.joints[i].ApplyVirtualMap(true, true);
     }
 }
Beispiel #2
0
 // Token: 0x0600274E RID: 10062 RVA: 0x000B6234 File Offset: 0x000B4434
 private static void Solve(Core.Chain chain, Transform endEffector, Vector3 LookAtAxis)
 {
     for (int i = 0; i < chain.joints.Count; i++)
     {
         Vector3    target = GenericMath.TransformVector(LookAtAxis, endEffector.rotation);
         Quaternion b      = GenericMath.RotateFromTo(chain.GetIKtarget() - endEffector.position, target);
         Quaternion qA     = Quaternion.Lerp(Quaternion.identity, b, chain.weight * chain.joints[i].weight);
         chain.joints[i].joint.rotation = GenericMath.ApplyQuaternion(qA, chain.joints[i].joint.rotation);
         chain.joints[i].ApplyRestrictions();
     }
 }
Beispiel #3
0
        /// <summary>
        /// Map the vitual solver's joints onto the physical ones
        /// </summary>
        /// <param name="chain"></param>
        public static void MapSolverOutput(Core.Chain chain)
        {
            for (int i = 0; i < chain.Joints.Count - 1; i++)
            {
                Vector3 _v1 = chain.Joints[i + 1].pos - chain.Joints[i].pos;
                Vector3 _v2 = GenericMath.TransformVector(chain.Joints[i].localAxis, chain.Joints[i].rot);

                Quaternion _offset = GenericMath.RotateFromTo(_v1, _v2);
                chain.Joints[i].rot = GenericMath.ApplyQuaternion(_offset, chain.Joints[i].rot);
                chain.Joints[i].ApplyVirtualMap(true, true);
            }
        }
 // Token: 0x0600272A RID: 10026 RVA: 0x000B5748 File Offset: 0x000B3948
 private static void MapSolverOutput(Core.KinematicChain chain)
 {
     for (int i = 1; i < chain.joints.Count; i++)
     {
         Vector3    target = GenericMath.TransformVector(chain.joints[i - 1].localAxis, chain.joints[i - 1].rot);
         Quaternion qA     = GenericMath.RotateFromTo(chain.joints[i].pos - chain.joints[i - 1].pos, target);
         chain.joints[i - 1].rot = GenericMath.ApplyQuaternion(qA, chain.joints[i - 1].rot);
         chain.joints[i - 1].ApplyVirtualMap(false, true);
         chain.joints[i].ApplyVirtualMap(true, false);
         chain.joints[i - 1].ApplyRestrictions();
         chain.joints[i].ApplyRestrictions();
     }
 }
Beispiel #5
0
        /// <summary>
        /// Solve the chain to make the offset look at the target
        /// </summary>
        /// <param name="chain"></param>
        /// <param name="endEffector"></param>
        private static void Solve(Core.Chain chain, Transform endEffector, Vector3 LookAtAxis)
        {
            for (int i = 0; i < chain.Joints.Count; i++)
            {
                //Vector3 axis = GenericMath.TransformVector(LookAtAxis, Quaternion.Inverse(offsetObj.rotation));
                Vector3    axis  = GenericMath.TransformVector(LookAtAxis, endEffector.rotation);
                Quaternion delta = GenericMath.RotateFromTo(chain.GetIKTarget() - endEffector.position, axis);
                Quaternion final = Quaternion.Lerp(Quaternion.identity, delta, chain.Weight * chain.Joints[i].weight);

                chain.Joints[i].joint.rotation = GenericMath.ApplyQuaternion(final, chain.Joints[i].joint.rotation);
                chain.Joints[i].ApplyRestrictions();
            }
        }
Beispiel #6
0
            // Token: 0x06002730 RID: 10032 RVA: 0x000B5A1C File Offset: 0x000B3C1C
            private Quaternion SingleDegree()
            {
                Vector3 target = GenericMath.TransformVector(this.axis, this.joint.transform.localRotation);
                float   num;
                Vector3 rhs;

                GenericMath.QuaternionToAngleAxis(GenericMath.ApplyQuaternion(GenericMath.RotateFromTo(this.axis, target), this.joint.localRotation), out num, out rhs);
                float x    = this.hingLimit.x;
                float y    = this.hingLimit.y;
                float num2 = Vector3.Dot(this.axis, rhs);

                num = GenericMath.Clamp(num * num2, x, y);
                this.joint.localRotation = GenericMath.QuaternionFromAngleAxis(num, this.axis);
                return(this.joint.localRotation);
            }
Beispiel #7
0
        /// <summary>
        /// Cast rays to find pumps in the terrain and sets the IK target to the appropriate hit point.
        /// (does not solve the IK, you need to Call a Solver separately)
        /// (The AnalyticalSolver is suggested)
        /// </summary>
        public void TerrainAdjustment(LayerMask mask, Transform root)
        {
            if (_init == false)
            {
                Init();
                return;
            }

            RaycastHit hit;
            Vector3    rootUp    = root.up;
            Ray        ray       = new Ray(EE.position, Vector3.down);
            bool       intersect = Physics.Raycast(ray, out hit, MaxStepHeight, mask, QueryTriggerInteraction.Ignore);

#if UNITY_EDITOR
            if (intersect)
            {
                //Debug.DrawLine(ray.origin, hit.point, Color.green); //enable for debug purposes
            }
#endif
            if (intersect)
            {
                float footHeight     = root.position.y - EE.position.y;
                float footFromGround = hit.point.y - root.position.y;

                float offsetTarget     = Mathf.Clamp(footFromGround, -MaxStepHeight, MaxStepHeight) + FootOffset;
                float currentMaxOffset = Mathf.Clamp(MaxStepHeight - footHeight, 0f, MaxStepHeight);
                float IK = Mathf.Clamp(offsetTarget, -currentMaxOffset, offsetTarget);

                IKPointOffset = rootUp * IK;
                normals       = Vector3.Lerp(normals, hit.normal, Time.deltaTime * EaseOutNormals);
            }
            else
            {
                IKPointOffset = Vector3.Lerp(IKPointOffset, Vector3.zero, Time.deltaTime * EaseOutPos);
                normals       = Vector3.Lerp(normals, rootUp, Time.deltaTime * EaseOutNormals);
            }

            Chain.SetIKTarget(EE.position + IKPointOffset);

            //calculate the ankle rot, before applying the IK
            _EETargetRot = GenericMath.RotateFromTo(normals, rootUp);
            _EEAnimRot   = EE.rotation;
        }
Beispiel #8
0
            /// <summary>
            /// The Full-Restricted motion limit
            /// </summary>
            /// <param name="_localRot"></param>
            /// <returns></returns>
            private Quaternion TwistAndSwing()
            {
                Func <Quaternion, float, Quaternion> LimitByAngle = (q, x) =>
                {
                    if (x == 0)
                    {
                        return(Quaternion.identity);
                    }

                    float      angle  = GenericMath.QuaternionAngle(Quaternion.identity, q);
                    float      t      = Mathf.Clamp01(x / angle);
                    Quaternion output = Quaternion.Slerp(Quaternion.identity, q, t); //lerp doesnt work :(
                    return(output);
                };

                Func <float, float> Sqr = x => x * x;

                Vector3 _localAxis = GenericMath.TransformVector(axis, joint.localRotation);

                //swing only quaternion
                Quaternion swing        = GenericMath.RotateFromTo(_localAxis, axis);
                Quaternion limitedSwing = LimitByAngle(swing, maxAngle);

                //twist only quaternion
                Quaternion twist = GenericMath.ApplyQuaternion(Quaternion.Inverse(swing), joint.localRotation);

                //twist decomposition
                float qM = Mathf.Sqrt(Sqr(twist.w) + Sqr(twist.x) + Sqr(twist.y) + Sqr(twist.z));
                float qw = twist.w / qM;
                float qx = twist.x / qM;
                float qy = twist.y / qM;
                float qz = twist.z / qM;

                Quaternion limitedTwist = LimitByAngle(new Quaternion(qx, qy, qz, qw), maxTwist);

                joint.localRotation = GenericMath.ApplyQuaternion(limitedTwist, limitedSwing);
                return(joint.localRotation);
            }
Beispiel #9
0
            /// <summary>
            /// Limit the motion to 1 Degree of freedom
            /// </summary>
            /// <param name="_localRot"></param>
            /// <returns></returns>
            private Quaternion SingleDegree()
            {
                float   angle;
                Vector3 axis;

                //Hinge only Quaternion
                Vector3    _localAxis = GenericMath.TransformVector(this.axis, joint.transform.localRotation);
                Quaternion _delta     = GenericMath.RotateFromTo(this.axis, _localAxis);
                Quaternion _legalRot  = GenericMath.ApplyQuaternion(_delta, joint.localRotation);

                GenericMath.QuaternionToAngleAxis(_legalRot, out angle, out axis);

                float min = hingLimit.x;
                float max = hingLimit.y;
                float dot = Vector3.Dot(this.axis, axis);

                //clamp values
                //angle = Mathf.Clamp(angle * dot, min, max);   //Unity's Clamp gives NaN values in particular cases so use our own
                angle = GenericMath.Clamp(angle * dot, min, max);

                joint.localRotation = GenericMath.QuaternionFromAngleAxis(angle, this.axis);
                return(joint.localRotation);
            }
 // Token: 0x0600274B RID: 10059 RVA: 0x000B60A8 File Offset: 0x000B42A8
 public static bool Process(Core.Chain chain)
 {
     if (chain.joints.Count <= 0)
     {
         return(false);
     }
     chain.MapVirtualJoints();
     for (int i = 0; i < chain.iterations; i++)
     {
         for (int j = chain.joints.Count - 1; j >= 0; j--)
         {
             float      t        = chain.weight * chain.joints[j].weight;
             Vector3    source   = chain.GetIKtarget() - chain.joints[j].joint.position;
             Vector3    target   = chain.joints[chain.joints.Count - 1].joint.position - chain.joints[j].joint.position;
             Quaternion rotation = chain.joints[j].joint.rotation;
             Quaternion qA       = Quaternion.Lerp(Quaternion.identity, GenericMath.RotateFromTo(source, target), t);
             chain.joints[j].rot = Quaternion.Lerp(rotation, GenericMath.ApplyQuaternion(qA, rotation), t);
             chain.joints[j].ApplyVirtualMap(false, true);
             chain.joints[j].ApplyRestrictions();
         }
     }
     return(true);
 }
        /// <summary>
        /// Solve the IK for a chain
        /// </summary>
        /// <param name="chain"></param>
        public static bool Process(Core.Chain chain)
        {
            if (chain.Joints.Count <= 0)
            {
                return(false);
            }

            chain.MapVirtualJoints();

            for (int j = 0; j < chain.Iterations; j++)
            {
                for (int i = chain.Joints.Count - 1; i >= 0; i--)
                {
                    float _weight = chain.Weight * chain.Joints[i].weight;  //relative weight

                    //direction vectors
                    Vector3 _v0 = chain.GetIKTarget() - chain.Joints[i].joint.position;
                    Vector3 _v1 = chain.Joints[chain.Joints.Count - 1].joint.position - chain.Joints[i].joint.position;

                    //Weight
                    Quaternion _sourceRotation = chain.Joints[i].joint.rotation;
                    Quaternion _targetRotation = Quaternion.Lerp(Quaternion.identity, GenericMath.RotateFromTo(_v0, _v1), _weight);

                    //Rotation Math
                    chain.Joints[i].rot = Quaternion.Lerp(_sourceRotation, GenericMath.ApplyQuaternion(_targetRotation, _sourceRotation), _weight);
                    chain.Joints[i].ApplyVirtualMap(false, true);
                    chain.Joints[i].ApplyRestrictions();
                }
            }

            return(true);
        }