//***********************************************************************
        // Fast calculation of modular reduction using Barrett's reduction.
        // Requires x < b^(2k), where b is the base.  In this case, base is
        // 2^32 (uint).
        //
        // Reference [4]
        //***********************************************************************

        private BigInteger BarrettReduction(BigInteger x, BigInteger n, BigInteger constant)
        {
            int k = n.DataLength,
                kPlusOne = k + 1,
                kMinusOne = k - 1;

            BigInteger q1 = new BigInteger();

            // q1 = x / b^(k-1)
            for (int i = kMinusOne, j = 0; i < x.DataLength; i++, j++)
                q1._Data[j] = x._Data[i];
            q1.DataLength = x.DataLength - kMinusOne;
            if (q1.DataLength <= 0)
                q1.DataLength = 1;


            BigInteger q2 = q1 * constant;
            BigInteger q3 = new BigInteger();

            // q3 = q2 / b^(k+1)
            for (int i = kPlusOne, j = 0; i < q2.DataLength; i++, j++)
                q3._Data[j] = q2._Data[i];
            q3.DataLength = q2.DataLength - kPlusOne;
            if (q3.DataLength <= 0)
                q3.DataLength = 1;


            // r1 = x mod b^(k+1)
            // i.e. keep the lowest (k+1) words
            BigInteger r1 = new BigInteger();
            int lengthToCopy = (x.DataLength > kPlusOne) ? kPlusOne : x.DataLength;
            for (int i = 0; i < lengthToCopy; i++)
                r1._Data[i] = x._Data[i];
            r1.DataLength = lengthToCopy;


            // r2 = (q3 * n) mod b^(k+1)
            // partial multiplication of q3 and n

            BigInteger r2 = new BigInteger();
            for (int i = 0; i < q3.DataLength; i++)
            {
                if (q3._Data[i] == 0) continue;

                ulong mcarry = 0;
                int t = i;
                for (int j = 0; j < n.DataLength && t < kPlusOne; j++, t++)
                {
                    // t = i + j
                    ulong val = ((ulong)q3._Data[i] * (ulong)n._Data[j]) +
                                 (ulong)r2._Data[t] + mcarry;

                    r2._Data[t] = (uint)(val & 0xFFFFFFFF);
                    mcarry = (val >> 32);
                }

                if (t < kPlusOne)
                    r2._Data[t] = (uint)mcarry;
            }
            r2.DataLength = kPlusOne;
            while (r2.DataLength > 1 && r2._Data[r2.DataLength - 1] == 0)
                r2.DataLength--;

            r1 -= r2;
            if ((r1._Data[_MaxLength - 1] & 0x80000000) != 0)        // negative
            {
                BigInteger val = new BigInteger();
                val._Data[kPlusOne] = 0x00000001;
                val.DataLength = kPlusOne + 1;
                r1 += val;
            }

            while (r1 >= n)
                r1 -= n;

            return r1;
        }
        public static BigInteger operator <<(BigInteger bi1, int shiftVal)
        {
            BigInteger result = new BigInteger(bi1);
            result.DataLength = shiftLeft(result._Data, shiftVal);

            return result;
        }
        public static BigInteger operator ~(BigInteger bi1)
        {
            BigInteger result = new BigInteger(bi1);

            for (int i = 0; i < _MaxLength; i++)
                result._Data[i] = (uint)(~(bi1._Data[i]));

            result.DataLength = _MaxLength;

            while (result.DataLength > 1 && result._Data[result.DataLength - 1] == 0)
                result.DataLength--;

            return result;
        }
        public static BigInteger operator ++(BigInteger bi1)
        {
            BigInteger result = new BigInteger(bi1);

            long val, carry = 1;
            int index = 0;

            while (carry != 0 && index < _MaxLength)
            {
                val = (long)(result._Data[index]);
                val++;

                result._Data[index] = (uint)(val & 0xFFFFFFFF);
                carry = val >> 32;

                index++;
            }

            if (index > result.DataLength)
                result.DataLength = index;
            else
            {
                while (result.DataLength > 1 && result._Data[result.DataLength - 1] == 0)
                    result.DataLength--;
            }

            // overflow check
            int lastPos = _MaxLength - 1;

            // overflow if initial value was +ve but ++ caused a sign
            // change to negative.

            if ((bi1._Data[lastPos] & 0x80000000) == 0 &&
               (result._Data[lastPos] & 0x80000000) != (bi1._Data[lastPos] & 0x80000000))
            {
                throw (new ArithmeticException("Overflow in ++."));
            }
            return result;
        }
        public static BigInteger operator --(BigInteger bi1)
        {
            BigInteger result = new BigInteger(bi1);

            long val;
            bool carryIn = true;
            int index = 0;

            while (carryIn && index < _MaxLength)
            {
                val = (long)(result._Data[index]);
                val--;

                result._Data[index] = (uint)(val & 0xFFFFFFFF);

                if (val >= 0)
                    carryIn = false;

                index++;
            }

            if (index > result.DataLength)
                result.DataLength = index;

            while (result.DataLength > 1 && result._Data[result.DataLength - 1] == 0)
                result.DataLength--;

            // overflow check
            int lastPos = _MaxLength - 1;

            // overflow if initial value was -ve but -- caused a sign
            // change to positive.

            if ((bi1._Data[lastPos] & 0x80000000) != 0 &&
               (result._Data[lastPos] & 0x80000000) != (bi1._Data[lastPos] & 0x80000000))
            {
                throw (new ArithmeticException("Underflow in --."));
            }

            return result;
        }
        //***********************************************************************
        // Tests the correct implementation of the modulo exponential and
        // inverse modulo functions using RSA encryption and decryption.  The two
        // pseudoprimes p and q are fixed, but the two RSA keys are generated
        // for each round of testing.
        //***********************************************************************

        public static void RSATest2(int rounds)
        {
            Random rand = new Random();
            byte[] val = new byte[64];

            byte[] pseudoPrime1 = {
                        (byte)0x85, (byte)0x84, (byte)0x64, (byte)0xFD, (byte)0x70, (byte)0x6A,
                        (byte)0x9F, (byte)0xF0, (byte)0x94, (byte)0x0C, (byte)0x3E, (byte)0x2C,
                        (byte)0x74, (byte)0x34, (byte)0x05, (byte)0xC9, (byte)0x55, (byte)0xB3,
                        (byte)0x85, (byte)0x32, (byte)0x98, (byte)0x71, (byte)0xF9, (byte)0x41,
                        (byte)0x21, (byte)0x5F, (byte)0x02, (byte)0x9E, (byte)0xEA, (byte)0x56,
                        (byte)0x8D, (byte)0x8C, (byte)0x44, (byte)0xCC, (byte)0xEE, (byte)0xEE,
                        (byte)0x3D, (byte)0x2C, (byte)0x9D, (byte)0x2C, (byte)0x12, (byte)0x41,
                        (byte)0x1E, (byte)0xF1, (byte)0xC5, (byte)0x32, (byte)0xC3, (byte)0xAA,
                        (byte)0x31, (byte)0x4A, (byte)0x52, (byte)0xD8, (byte)0xE8, (byte)0xAF,
                        (byte)0x42, (byte)0xF4, (byte)0x72, (byte)0xA1, (byte)0x2A, (byte)0x0D,
                        (byte)0x97, (byte)0xB1, (byte)0x31, (byte)0xB3,
                };

            byte[] pseudoPrime2 = {
                        (byte)0x99, (byte)0x98, (byte)0xCA, (byte)0xB8, (byte)0x5E, (byte)0xD7,
                        (byte)0xE5, (byte)0xDC, (byte)0x28, (byte)0x5C, (byte)0x6F, (byte)0x0E,
                        (byte)0x15, (byte)0x09, (byte)0x59, (byte)0x6E, (byte)0x84, (byte)0xF3,
                        (byte)0x81, (byte)0xCD, (byte)0xDE, (byte)0x42, (byte)0xDC, (byte)0x93,
                        (byte)0xC2, (byte)0x7A, (byte)0x62, (byte)0xAC, (byte)0x6C, (byte)0xAF,
                        (byte)0xDE, (byte)0x74, (byte)0xE3, (byte)0xCB, (byte)0x60, (byte)0x20,
                        (byte)0x38, (byte)0x9C, (byte)0x21, (byte)0xC3, (byte)0xDC, (byte)0xC8,
                        (byte)0xA2, (byte)0x4D, (byte)0xC6, (byte)0x2A, (byte)0x35, (byte)0x7F,
                        (byte)0xF3, (byte)0xA9, (byte)0xE8, (byte)0x1D, (byte)0x7B, (byte)0x2C,
                        (byte)0x78, (byte)0xFA, (byte)0xB8, (byte)0x02, (byte)0x55, (byte)0x80,
                        (byte)0x9B, (byte)0xC2, (byte)0xA5, (byte)0xCB,
                };


            BigInteger bi_p = new BigInteger(pseudoPrime1);
            BigInteger bi_q = new BigInteger(pseudoPrime2);
            BigInteger bi_pq = (bi_p - 1) * (bi_q - 1);
            BigInteger bi_n = bi_p * bi_q;

            for (int count = 0; count < rounds; count++)
            {
                // generate private and public key
                BigInteger bi_e = bi_pq.genCoPrime(512, rand);
                BigInteger bi_d = bi_e.modInverse(bi_pq);

                Console.WriteLine("\ne =\n" + bi_e.ToString(10));
                Console.WriteLine("\nd =\n" + bi_d.ToString(10));
                Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

                // generate data of random length
                int t1 = 0;
                while (t1 == 0)
                    t1 = (int)(rand.NextDouble() * 65);

                bool done = false;
                while (!done)
                {
                    for (int i = 0; i < 64; i++)
                    {
                        if (i < t1)
                            val[i] = (byte)(rand.NextDouble() * 256);
                        else
                            val[i] = 0;

                        if (val[i] != 0)
                            done = true;
                    }
                }

                while (val[0] == 0)
                    val[0] = (byte)(rand.NextDouble() * 256);

                Console.Write("Round = " + count);

                // encrypt and decrypt data
                BigInteger bi_data = new BigInteger(val, t1);
                BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
                BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);

                // compare
                if (bi_decrypted != bi_data)
                {
                    Console.WriteLine("\nError at round " + count);
                    Console.WriteLine(bi_data + "\n");
                    return;
                }
                Console.WriteLine(" <PASSED>.");
            }

        }
        /// <summary>
        /// Returns a string representing the BigInteger in sign-and-magnitude
        /// format in the specified radix.
        /// </summary>
        /// <example>
        /// If the value of BigInteger is -255 in base 10, then ToString(16) returns "-FF"
        /// </example>
        /// <param name="radix">The radix.</param>
        /// <returns>
        /// A <see cref="System.String"/> that represents this instance.
        /// </returns>
        public string ToString(int radix)
        {
            if (radix < 2 || radix > 36)
                throw (new ArgumentException("Radix must be >= 2 and <= 36"));

            string charSet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
            string result = "";

            BigInteger a = this;

            bool negative = false;
            if ((a._Data[_MaxLength - 1] & 0x80000000) != 0)
            {
                negative = true;
                try
                {
                    a = -a;
                }
                catch (Exception) { }
            }

            BigInteger quotient = new BigInteger();
            BigInteger remainder = new BigInteger();
            BigInteger biRadix = new BigInteger(radix);

            if (a.DataLength == 1 && a._Data[0] == 0)
                result = "0";
            else
            {
                while (a.DataLength > 1 || (a.DataLength == 1 && a._Data[0] != 0))
                {
                    SingleByteDivide(a, biRadix, quotient, remainder);

                    if (remainder._Data[0] < 10)
                        result = remainder._Data[0] + result;
                    else
                        result = charSet[(int)remainder._Data[0] - 10] + result;

                    a = quotient;
                }
                if (negative)
                    result = "-" + result;
            }

            return result;
        }
        //***********************************************************************
        // Computes the Jacobi Symbol for a and b.
        // Algorithm adapted from [3] and [4] with some optimizations
        //***********************************************************************

        public static int Jacobi(BigInteger a, BigInteger b)
        {
            // Jacobi defined only for odd integers
            if ((b._Data[0] & 0x1) == 0)
                throw (new ArgumentException("Jacobi defined only for odd integers."));

            if (a >= b) a %= b;
            if (a.DataLength == 1 && a._Data[0] == 0) return 0;  // a == 0
            if (a.DataLength == 1 && a._Data[0] == 1) return 1;  // a == 1

            if (a < 0)
            {
                if ((((b - 1)._Data[0]) & 0x2) == 0)       //if( (((b-1) >> 1).data[0] & 0x1) == 0)
                    return Jacobi(-a, b);
                else
                    return -Jacobi(-a, b);
            }

            int e = 0;
            for (int index = 0; index < a.DataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((a._Data[index] & mask) != 0)
                    {
                        index = a.DataLength;      // to break the outer loop
                        break;
                    }
                    mask <<= 1;
                    e++;
                }
            }

            BigInteger a1 = a >> e;

            int s = 1;
            if ((e & 0x1) != 0 && ((b._Data[0] & 0x7) == 3 || (b._Data[0] & 0x7) == 5))
                s = -1;

            if ((b._Data[0] & 0x3) == 3 && (a1._Data[0] & 0x3) == 3)
                s = -s;

            if (a1.DataLength == 1 && a1._Data[0] == 1)
                return s;
            else
                return (s * Jacobi(b % a1, a1));
        }
        //***********************************************************************
        // Generates a positive BigInteger that is probably prime.
        //***********************************************************************

        public static BigInteger genPseudoPrime(int bits, int confidence, Random rand)
        {
            BigInteger result = new BigInteger();
            bool done = false;

            while (!done)
            {
                result.RandomBitsGenerator(bits, rand);
                result._Data[0] |= 0x01;		// make it odd

                // prime test
                done = result.isProbablePrime(confidence);
            }
            return result;
        }
        //***********************************************************************
        // Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
        //
        // p is probably prime if for any a < p (a is not multiple of p),
        // a^((p-1)/2) mod p = J(a, p)
        //
        // where J is the Jacobi symbol.
        //
        // Otherwise, p is composite.
        //
        // Returns
        // -------
        // True if "this" is a Euler pseudoprime to randomly chosen
        // bases.  The number of chosen bases is given by the "confidence"
        // parameter.
        //
        // False if "this" is definitely NOT prime.
        //
        //***********************************************************************

        public bool SolovayStrassenTest(int confidence)
        {
            BigInteger thisVal;
            if ((this._Data[_MaxLength - 1] & 0x80000000) != 0)        // negative
                thisVal = -this;
            else
                thisVal = this;

            if (thisVal.DataLength == 1)
            {
                // test small numbers
                if (thisVal._Data[0] == 0 || thisVal._Data[0] == 1)
                    return false;
                else if (thisVal._Data[0] == 2 || thisVal._Data[0] == 3)
                    return true;
            }

            if ((thisVal._Data[0] & 0x1) == 0)     // even numbers
                return false;


            int bits = thisVal.BitCount();
            BigInteger a = new BigInteger();
            BigInteger p_sub1 = thisVal - 1;
            BigInteger p_sub1_shift = p_sub1 >> 1;

            Random rand = new Random();

            for (int round = 0; round < confidence; round++)
            {
                bool done = false;

                while (!done)		// generate a < n
                {
                    int testBits = 0;

                    // make sure "a" has at least 2 bits
                    while (testBits < 2)
                        testBits = (int)(rand.NextDouble() * bits);

                    a.RandomBitsGenerator(testBits, rand);

                    int byteLen = a.DataLength;

                    // make sure "a" is not 0
                    if (byteLen > 1 || (byteLen == 1 && a._Data[0] != 1))
                        done = true;
                }

                // check whether a factor exists (fix for version 1.03)
                BigInteger gcdTest = a.gcd(thisVal);
                if (gcdTest.DataLength == 1 && gcdTest._Data[0] != 1)
                    return false;

                // calculate a^((p-1)/2) mod p

                BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
                if (expResult == p_sub1)
                    expResult = -1;

                // calculate Jacobi symbol
                BigInteger jacob = Jacobi(a, thisVal);

                //Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
                //Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));

                // if they are different then it is not prime
                if (expResult != jacob)
                    return false;
            }

            return true;
        }
        private bool LucasStrongTestHelper(BigInteger thisVal)
        {
            // Do the test (selects D based on Selfridge)
            // Let D be the first element of the sequence
            // 5, -7, 9, -11, 13, ... for which J(D,n) = -1
            // Let P = 1, Q = (1-D) / 4

            long D = 5, sign = -1, dCount = 0;
            bool done = false;

            while (!done)
            {
                int Jresult = BigInteger.Jacobi(D, thisVal);

                if (Jresult == -1)
                    done = true;    // J(D, this) = 1
                else
                {
                    if (Jresult == 0 && System.Math.Abs(D) < thisVal)       // divisor found
                        return false;

                    if (dCount == 20)
                    {
                        // check for square
                        BigInteger root = thisVal.sqrt();
                        if (root * root == thisVal)
                            return false;
                    }

                    //Console.WriteLine(D);
                    D = (System.Math.Abs(D) + 2) * sign;
                    sign = -sign;
                }
                dCount++;
            }

            long Q = (1 - D) >> 2;

            /*
            Console.WriteLine("D = " + D);
            Console.WriteLine("Q = " + Q);
            Console.WriteLine("(n,D) = " + thisVal.gcd(D));
            Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
            Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
            */

            BigInteger p_add1 = thisVal + 1;
            int s = 0;

            for (int index = 0; index < p_add1.DataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((p_add1._Data[index] & mask) != 0)
                    {
                        index = p_add1.DataLength;      // to break the outer loop
                        break;
                    }
                    mask <<= 1;
                    s++;
                }
            }

            BigInteger t = p_add1 >> s;

            // calculate constant = b^(2k) / m
            // for Barrett Reduction
            BigInteger constant = new BigInteger();

            int nLen = thisVal.DataLength << 1;
            constant._Data[nLen] = 0x00000001;
            constant.DataLength = nLen + 1;

            constant = constant / thisVal;

            BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
            bool isPrime = false;

            if ((lucas[0].DataLength == 1 && lucas[0]._Data[0] == 0) ||
               (lucas[1].DataLength == 1 && lucas[1]._Data[0] == 0))
            {
                // u(t) = 0 or V(t) = 0
                isPrime = true;
            }

            for (int i = 1; i < s; i++)
            {
                if (!isPrime)
                {
                    // doubling of index
                    lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
                    lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;

                    //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;

                    if ((lucas[1].DataLength == 1 && lucas[1]._Data[0] == 0))
                        isPrime = true;
                }

                lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant);     //Q^k
            }


            if (isPrime)     // additional checks for composite numbers
            {
                // If n is prime and gcd(n, Q) == 1, then
                // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n

                BigInteger g = thisVal.gcd(Q);
                if (g.DataLength == 1 && g._Data[0] == 1)         // gcd(this, Q) == 1
                {
                    if ((lucas[2]._Data[_MaxLength - 1] & 0x80000000) != 0)
                        lucas[2] += thisVal;

                    BigInteger temp = (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal;
                    if ((temp._Data[_MaxLength - 1] & 0x80000000) != 0)
                        temp += thisVal;

                    if (lucas[2] != temp)
                        isPrime = false;
                }
            }

            return isPrime;
        }
        //***********************************************************************
        // Probabilistic prime test based on Rabin-Miller's
        //
        // for any p > 0 with p - 1 = 2^s * t
        //
        // p is probably prime (strong pseudoprime) if for any a < p,
        // 1) a^t mod p = 1 or
        // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
        //
        // Otherwise, p is composite.
        //
        // Returns
        // -------
        // True if "this" is a strong pseudoprime to randomly chosen
        // bases.  The number of chosen bases is given by the "confidence"
        // parameter.
        //
        // False if "this" is definitely NOT prime.
        //
        //***********************************************************************

        public bool RabinMillerTest(int confidence)
        {
            BigInteger thisVal;
            if ((this._Data[_MaxLength - 1] & 0x80000000) != 0)        // negative
                thisVal = -this;
            else
                thisVal = this;

            if (thisVal.DataLength == 1)
            {
                // test small numbers
                if (thisVal._Data[0] == 0 || thisVal._Data[0] == 1)
                    return false;
                else if (thisVal._Data[0] == 2 || thisVal._Data[0] == 3)
                    return true;
            }

            if ((thisVal._Data[0] & 0x1) == 0)     // even numbers
                return false;


            // calculate values of s and t
            BigInteger p_sub1 = thisVal - (new BigInteger(1));
            int s = 0;

            for (int index = 0; index < p_sub1.DataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((p_sub1._Data[index] & mask) != 0)
                    {
                        index = p_sub1.DataLength;      // to break the outer loop
                        break;
                    }
                    mask <<= 1;
                    s++;
                }
            }

            BigInteger t = p_sub1 >> s;

            int bits = thisVal.BitCount();
            BigInteger a = new BigInteger();
            Random rand = new Random();

            for (int round = 0; round < confidence; round++)
            {
                bool done = false;

                while (!done)		// generate a < n
                {
                    int testBits = 0;

                    // make sure "a" has at least 2 bits
                    while (testBits < 2)
                        testBits = (int)(rand.NextDouble() * bits);

                    a.RandomBitsGenerator(testBits, rand);

                    int byteLen = a.DataLength;

                    // make sure "a" is not 0
                    if (byteLen > 1 || (byteLen == 1 && a._Data[0] != 1))
                        done = true;
                }

                // check whether a factor exists (fix for version 1.03)
                BigInteger gcdTest = a.gcd(thisVal);
                if (gcdTest.DataLength == 1 && gcdTest._Data[0] != 1)
                    return false;

                BigInteger b = a.modPow(t, thisVal);

                /*
                Console.WriteLine("a = " + a.ToString(10));
                Console.WriteLine("b = " + b.ToString(10));
                Console.WriteLine("t = " + t.ToString(10));
                Console.WriteLine("s = " + s);
                */

                bool result = false;

                if (b.DataLength == 1 && b._Data[0] == 1)         // a^t mod p = 1
                    result = true;

                for (int j = 0; result == false && j < s; j++)
                {
                    if (b == p_sub1)         // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
                    {
                        result = true;
                        break;
                    }

                    b = (b * b) % thisVal;
                }

                if (result == false)
                    return false;
            }
            return true;
        }
        //***********************************************************************
        // Probabilistic prime test based on Fermat's little theorem
        //
        // for any a < p (p does not divide a) if
        //      a^(p-1) mod p != 1 then p is not prime.
        //
        // Otherwise, p is probably prime (pseudoprime to the chosen base).
        //
        // Returns
        // -------
        // True if "this" is a pseudoprime to randomly chosen
        // bases.  The number of chosen bases is given by the "confidence"
        // parameter.
        //
        // False if "this" is definitely NOT prime.
        //
        // Note - this method is fast but fails for Carmichael numbers except
        // when the randomly chosen base is a factor of the number.
        //
        //***********************************************************************

        public bool FermatLittleTest(int confidence)
        {
            BigInteger thisVal;
            if ((this._Data[_MaxLength - 1] & 0x80000000) != 0)        // negative
                thisVal = -this;
            else
                thisVal = this;

            if (thisVal.DataLength == 1)
            {
                // test small numbers
                if (thisVal._Data[0] == 0 || thisVal._Data[0] == 1)
                    return false;
                else if (thisVal._Data[0] == 2 || thisVal._Data[0] == 3)
                    return true;
            }

            if ((thisVal._Data[0] & 0x1) == 0)     // even numbers
                return false;

            int bits = thisVal.BitCount();
            BigInteger a = new BigInteger();
            BigInteger p_sub1 = thisVal - (new BigInteger(1));
            Random rand = new Random();

            for (int round = 0; round < confidence; round++)
            {
                bool done = false;

                while (!done)		// generate a < n
                {
                    int testBits = 0;

                    // make sure "a" has at least 2 bits
                    while (testBits < 2)
                        testBits = (int)(rand.NextDouble() * bits);

                    a.RandomBitsGenerator(testBits, rand);

                    int byteLen = a.DataLength;

                    // make sure "a" is not 0
                    if (byteLen > 1 || (byteLen == 1 && a._Data[0] != 1))
                        done = true;
                }

                // check whether a factor exists (fix for version 1.03)
                BigInteger gcdTest = a.gcd(thisVal);
                if (gcdTest.DataLength == 1 && gcdTest._Data[0] != 1)
                    return false;

                // calculate a^(p-1) mod p
                BigInteger expResult = a.modPow(p_sub1, thisVal);

                int resultLen = expResult.DataLength;

                // is NOT prime is a^(p-1) mod p != 1

                if (resultLen > 1 || (resultLen == 1 && expResult._Data[0] != 1))
                {
                    //Console.WriteLine("a = " + a.ToString());
                    return false;
                }
            }

            return true;
        }
        //***********************************************************************
        // Returns gcd(this, bi)
        //***********************************************************************

        public BigInteger gcd(BigInteger bi)
        {
            BigInteger x;
            BigInteger y;

            if ((_Data[_MaxLength - 1] & 0x80000000) != 0)     // negative
                x = -this;
            else
                x = this;

            if ((bi._Data[_MaxLength - 1] & 0x80000000) != 0)     // negative
                y = -bi;
            else
                y = bi;

            BigInteger g = y;

            while (x.DataLength > 1 || (x.DataLength == 1 && x._Data[0] != 0))
            {
                g = x;
                x = y % x;
                y = g;
            }

            return g;
        }
        //***********************************************************************
        // Tests the correct implementation of the /, %, * and + operators
        //***********************************************************************

        public static void MulDivTest(int rounds)
        {
            Random rand = new Random();
            byte[] val = new byte[64];
            byte[] val2 = new byte[64];

            for (int count = 0; count < rounds; count++)
            {
                // generate 2 numbers of random length
                int t1 = 0;
                while (t1 == 0)
                    t1 = (int)(rand.NextDouble() * 65);

                int t2 = 0;
                while (t2 == 0)
                    t2 = (int)(rand.NextDouble() * 65);

                bool done = false;
                while (!done)
                {
                    for (int i = 0; i < 64; i++)
                    {
                        if (i < t1)
                            val[i] = (byte)(rand.NextDouble() * 256);
                        else
                            val[i] = 0;

                        if (val[i] != 0)
                            done = true;
                    }
                }

                done = false;
                while (!done)
                {
                    for (int i = 0; i < 64; i++)
                    {
                        if (i < t2)
                            val2[i] = (byte)(rand.NextDouble() * 256);
                        else
                            val2[i] = 0;

                        if (val2[i] != 0)
                            done = true;
                    }
                }

                while (val[0] == 0)
                    val[0] = (byte)(rand.NextDouble() * 256);
                while (val2[0] == 0)
                    val2[0] = (byte)(rand.NextDouble() * 256);

                Console.WriteLine(count);
                BigInteger bn1 = new BigInteger(val, t1);
                BigInteger bn2 = new BigInteger(val2, t2);


                // Determine the quotient and remainder by dividing
                // the first number by the second.

                BigInteger bn3 = bn1 / bn2;
                BigInteger bn4 = bn1 % bn2;

                // Recalculate the number
                BigInteger bn5 = (bn3 * bn2) + bn4;

                // Make sure they're the same
                if (bn5 != bn1)
                {
                    Console.WriteLine("Error at " + count);
                    Console.WriteLine(bn1 + "\n");
                    Console.WriteLine(bn2 + "\n");
                    Console.WriteLine(bn3 + "\n");
                    Console.WriteLine(bn4 + "\n");
                    Console.WriteLine(bn5 + "\n");
                    return;
                }
            }
        }
        //***********************************************************************
        // Generates a random number with the specified number of bits such
        // that gcd(number, this) = 1
        //***********************************************************************

        public BigInteger genCoPrime(int bits, Random rand)
        {
            bool done = false;
            BigInteger result = new BigInteger();

            while (!done)
            {
                result.RandomBitsGenerator(bits, rand);
                //Console.WriteLine(result.ToString(16));

                // gcd test
                BigInteger g = result.gcd(this);
                if (g.DataLength == 1 && g._Data[0] == 1)
                    done = true;
            }

            return result;
        }
        //***********************************************************************
        // Tests the correct implementation of the modulo exponential function
        // using RSA encryption and decryption (using pre-computed encryption and
        // decryption keys).
        //***********************************************************************

        public static void RSATest(int rounds)
        {
            Random rand = new Random(1);
            byte[] val = new byte[64];

            // private and public key
            BigInteger bi_e = new BigInteger("a932b948feed4fb2b692609bd22164fc9edb59fae7880cc1eaff7b3c9626b7e5b241c27a974833b2622ebe09beb451917663d47232488f23a117fc97720f1e7", 16);
            BigInteger bi_d = new BigInteger("4adf2f7a89da93248509347d2ae506d683dd3a16357e859a980c4f77a4e2f7a01fae289f13a851df6e9db5adaa60bfd2b162bbbe31f7c8f828261a6839311929d2cef4f864dde65e556ce43c89bbbf9f1ac5511315847ce9cc8dc92470a747b8792d6a83b0092d2e5ebaf852c85cacf34278efa99160f2f8aa7ee7214de07b7", 16);
            BigInteger bi_n = new BigInteger("e8e77781f36a7b3188d711c2190b560f205a52391b3479cdb99fa010745cbeba5f2adc08e1de6bf38398a0487c4a73610d94ec36f17f3f46ad75e17bc1adfec99839589f45f95ccc94cb2a5c500b477eb3323d8cfab0c8458c96f0147a45d27e45a4d11d54d77684f65d48f15fafcc1ba208e71e921b9bd9017c16a5231af7f", 16);

            Console.WriteLine("e =\n" + bi_e.ToString(10));
            Console.WriteLine("\nd =\n" + bi_d.ToString(10));
            Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

            for (int count = 0; count < rounds; count++)
            {
                // generate data of random length
                int t1 = 0;
                while (t1 == 0)
                    t1 = (int)(rand.NextDouble() * 65);

                bool done = false;
                while (!done)
                {
                    for (int i = 0; i < 64; i++)
                    {
                        if (i < t1)
                            val[i] = (byte)(rand.NextDouble() * 256);
                        else
                            val[i] = 0;

                        if (val[i] != 0)
                            done = true;
                    }
                }

                while (val[0] == 0)
                    val[0] = (byte)(rand.NextDouble() * 256);

                Console.Write("Round = " + count);

                // encrypt and decrypt data
                BigInteger bi_data = new BigInteger(val, t1);
                BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
                BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);

                // compare
                if (bi_decrypted != bi_data)
                {
                    Console.WriteLine("\nError at round " + count);
                    Console.WriteLine(bi_data + "\n");
                    return;
                }
                Console.WriteLine(" <PASSED>.");
            }

        }
        //***********************************************************************
        // Returns the modulo inverse of this.  Throws ArithmeticException if
        // the inverse does not exist.  (i.e. gcd(this, modulus) != 1)
        //***********************************************************************

        public BigInteger modInverse(BigInteger modulus)
        {
            BigInteger[] p = { 0, 1 };
            BigInteger[] q = new BigInteger[2];    // quotients
            BigInteger[] r = { 0, 0 };             // remainders

            int step = 0;

            BigInteger a = modulus;
            BigInteger b = this;

            while (b.DataLength > 1 || (b.DataLength == 1 && b._Data[0] != 0))
            {
                BigInteger quotient = new BigInteger();
                BigInteger remainder = new BigInteger();

                if (step > 1)
                {
                    BigInteger pval = (p[0] - (p[1] * q[0])) % modulus;
                    p[0] = p[1];
                    p[1] = pval;
                }

                if (b.DataLength == 1)
                    SingleByteDivide(a, b, quotient, remainder);
                else
                    MultiByteDivide(a, b, quotient, remainder);

                /*
                Console.WriteLine(quotient.dataLength);
                Console.WriteLine("{0} = {1}({2}) + {3}  p = {4}", a.ToString(10),
                                  b.ToString(10), quotient.ToString(10), remainder.ToString(10),
                                  p[1].ToString(10));
                */

                q[0] = q[1];
                r[0] = r[1];
                q[1] = quotient; r[1] = remainder;

                a = b;
                b = remainder;

                step++;
            }

            if (r[0].DataLength > 1 || (r[0].DataLength == 1 && r[0]._Data[0] != 1))
                throw (new ArithmeticException("No inverse!"));

            BigInteger result = ((p[0] - (p[1] * q[0])) % modulus);

            if ((result._Data[_MaxLength - 1] & 0x80000000) != 0)
                result += modulus;  // get the least positive modulus

            return result;
        }
        //***********************************************************************
        // Tests the correct implementation of sqrt() method.
        //***********************************************************************

        public static void SqrtTest(int rounds)
        {
            Random rand = new Random();
            for (int count = 0; count < rounds; count++)
            {
                // generate data of random length
                int t1 = 0;
                while (t1 == 0)
                    t1 = (int)(rand.NextDouble() * 1024);

                Console.Write("Round = " + count);

                BigInteger a = new BigInteger();
                a.RandomBitsGenerator(t1, rand);

                BigInteger b = a.sqrt();
                BigInteger c = (b + 1) * (b + 1);

                // check that b is the largest integer such that b*b <= a
                if (c <= a)
                {
                    Console.WriteLine("\nError at round " + count);
                    Console.WriteLine(a + "\n");
                    return;
                }
                Console.WriteLine(" <PASSED>.");
            }
        }
        public BigInteger(BigInteger bi)
        {
            _Data = new uint[_MaxLength];

            DataLength = bi.DataLength;

            for (int i = 0; i < DataLength; i++)
                _Data[i] = bi._Data[i];
        }
        public static BigInteger operator +(BigInteger bi1, BigInteger bi2)
        {
            BigInteger result = new BigInteger();

            result.DataLength = (bi1.DataLength > bi2.DataLength) ? bi1.DataLength : bi2.DataLength;

            long carry = 0;
            for (int i = 0; i < result.DataLength; i++)
            {
                long sum = (long)bi1._Data[i] + (long)bi2._Data[i] + carry;
                carry = sum >> 32;
                result._Data[i] = (uint)(sum & 0xFFFFFFFF);
            }

            if (carry != 0 && result.DataLength < _MaxLength)
            {
                result._Data[result.DataLength] = (uint)(carry);
                result.DataLength++;
            }

            while (result.DataLength > 1 && result._Data[result.DataLength - 1] == 0)
                result.DataLength--;


            // overflow check
            int lastPos = _MaxLength - 1;
            if ((bi1._Data[lastPos] & 0x80000000) == (bi2._Data[lastPos] & 0x80000000) &&
               (result._Data[lastPos] & 0x80000000) != (bi1._Data[lastPos] & 0x80000000))
            {
                throw (new ArithmeticException());
            }

            return result;
        }
        public BigInteger(string value, int radix)
        {
            BigInteger multiplier = new BigInteger(1);
            BigInteger result = new BigInteger();
            value = (value.ToUpper()).Trim();
            int limit = 0;

            if (value[0] == '-')
                limit = 1;

            for (int i = value.Length - 1; i >= limit; i--)
            {
                int posVal = (int)value[i];

                if (posVal >= '0' && posVal <= '9')
                {
                    posVal -= '0';
                }
                else if (posVal >= 'A' && posVal <= 'Z')
                {
                    posVal = (posVal - 'A') + 10;
                }
                else
                {
                    posVal = 9999999;       // arbitrary large
                }

                if (posVal >= radix)
                {
                    throw (new ArithmeticException("Invalid string in constructor."));
                }
                else
                {
                    if (value[0] == '-')
                        posVal = -posVal;

                    result = result + (multiplier * posVal);

                    if ((i - 1) >= limit)
                        multiplier = multiplier * radix;
                }
            }

            if (value[0] == '-')     // negative values
            {
                if ((result._Data[_MaxLength - 1] & 0x80000000) == 0)
                    throw (new ArithmeticException("Negative underflow in constructor."));
            }
            else    // positive values
            {
                if ((result._Data[_MaxLength - 1] & 0x80000000) != 0)
                    throw (new ArithmeticException("Positive overflow in constructor."));
            }

            _Data = new uint[_MaxLength];
            for (int i = 0; i < result.DataLength; i++)
                _Data[i] = result._Data[i];

            DataLength = result.DataLength;
        }
        public static BigInteger operator -(BigInteger bi1, BigInteger bi2)
        {
            BigInteger result = new BigInteger();

            result.DataLength = (bi1.DataLength > bi2.DataLength) ? bi1.DataLength : bi2.DataLength;

            long carryIn = 0;
            for (int i = 0; i < result.DataLength; i++)
            {
                long diff;

                diff = (long)bi1._Data[i] - (long)bi2._Data[i] - carryIn;
                result._Data[i] = (uint)(diff & 0xFFFFFFFF);

                if (diff < 0)
                    carryIn = 1;
                else
                    carryIn = 0;
            }

            // roll over to negative
            if (carryIn != 0)
            {
                for (int i = result.DataLength; i < _MaxLength; i++)
                    result._Data[i] = 0xFFFFFFFF;
                result.DataLength = _MaxLength;
            }

            // fixed in v1.03 to give correct datalength for a - (-b)
            while (result.DataLength > 1 && result._Data[result.DataLength - 1] == 0)
                result.DataLength--;

            // overflow check

            int lastPos = _MaxLength - 1;
            if ((bi1._Data[lastPos] & 0x80000000) != (bi2._Data[lastPos] & 0x80000000) &&
               (result._Data[lastPos] & 0x80000000) != (bi1._Data[lastPos] & 0x80000000))
            {
                throw (new ArithmeticException());
            }

            return result;
        }
        //***********************************************************************
        // Returns a value that is equivalent to the integer square root
        // of the BigInteger.
        //
        // The integer square root of "this" is defined as the largest integer n
        // such that (n * n) <= this
        //
        //***********************************************************************

        public BigInteger sqrt()
        {
            uint numBits = (uint)this.BitCount();

            if ((numBits & 0x1) != 0)        // odd number of bits
                numBits = (numBits >> 1) + 1;
            else
                numBits = (numBits >> 1);

            uint bytePos = numBits >> 5;
            byte bitPos = (byte)(numBits & 0x1F);

            uint mask;

            BigInteger result = new BigInteger();
            if (bitPos == 0)
                mask = 0x80000000;
            else
            {
                mask = (uint)1 << bitPos;
                bytePos++;
            }
            result.DataLength = (int)bytePos;

            for (int i = (int)bytePos - 1; i >= 0; i--)
            {
                while (mask != 0)
                {
                    // guess
                    result._Data[i] ^= mask;

                    // undo the guess if its square is larger than this
                    if ((result * result) > this)
                        result._Data[i] ^= mask;

                    mask >>= 1;
                }
                mask = 0x80000000;
            }
            return result;
        }
        public static BigInteger operator *(BigInteger bi1, BigInteger bi2)
        {
            int lastPos = _MaxLength - 1;
            bool bi1Neg = false, bi2Neg = false;

            // take the absolute value of the inputs
            try
            {
                if ((bi1._Data[lastPos] & 0x80000000) != 0)     // bi1 negative
                {
                    bi1Neg = true; bi1 = -bi1;
                }
                if ((bi2._Data[lastPos] & 0x80000000) != 0)     // bi2 negative
                {
                    bi2Neg = true; bi2 = -bi2;
                }
            }
            catch (Exception) { }

            BigInteger result = new BigInteger();

            // multiply the absolute values
            try
            {
                for (int i = 0; i < bi1.DataLength; i++)
                {
                    if (bi1._Data[i] == 0) continue;

                    ulong mcarry = 0;
                    for (int j = 0, k = i; j < bi2.DataLength; j++, k++)
                    {
                        // k = i + j
                        ulong val = ((ulong)bi1._Data[i] * (ulong)bi2._Data[j]) +
                                     (ulong)result._Data[k] + mcarry;

                        result._Data[k] = (uint)(val & 0xFFFFFFFF);
                        mcarry = (val >> 32);
                    }

                    if (mcarry != 0)
                        result._Data[i + bi2.DataLength] = (uint)mcarry;
                }
            }
            catch (Exception)
            {
                throw (new ArithmeticException("Multiplication overflow."));
            }


            result.DataLength = bi1.DataLength + bi2.DataLength;
            if (result.DataLength > _MaxLength)
                result.DataLength = _MaxLength;

            while (result.DataLength > 1 && result._Data[result.DataLength - 1] == 0)
                result.DataLength--;

            // overflow check (result is -ve)
            if ((result._Data[lastPos] & 0x80000000) != 0)
            {
                if (bi1Neg != bi2Neg && result._Data[lastPos] == 0x80000000)    // different sign
                {
                    // handle the special case where multiplication produces
                    // a max negative number in 2's complement.

                    if (result.DataLength == 1)
                        return result;
                    else
                    {
                        bool isMaxNeg = true;
                        for (int i = 0; i < result.DataLength - 1 && isMaxNeg; i++)
                        {
                            if (result._Data[i] != 0)
                                isMaxNeg = false;
                        }

                        if (isMaxNeg)
                            return result;
                    }
                }

                throw (new ArithmeticException("Multiplication overflow."));
            }

            // if input has different signs, then result is -ve
            if (bi1Neg != bi2Neg)
                return -result;

            return result;
        }
        //***********************************************************************
        // Returns the k_th number in the Lucas Sequence reduced modulo n.
        //
        // Uses index doubling to speed up the process.  For example, to calculate V(k),
        // we maintain two numbers in the sequence V(n) and V(n+1).
        //
        // To obtain V(2n), we use the identity
        //      V(2n) = (V(n) * V(n)) - (2 * Q^n)
        // To obtain V(2n+1), we first write it as
        //      V(2n+1) = V((n+1) + n)
        // and use the identity
        //      V(m+n) = V(m) * V(n) - Q * V(m-n)
        // Hence,
        //      V((n+1) + n) = V(n+1) * V(n) - Q^n * V((n+1) - n)
        //                   = V(n+1) * V(n) - Q^n * V(1)
        //                   = V(n+1) * V(n) - Q^n * P
        //
        // We use k in its binary expansion and perform index doubling for each
        // bit position.  For each bit position that is set, we perform an
        // index doubling followed by an index addition.  This means that for V(n),
        // we need to update it to V(2n+1).  For V(n+1), we need to update it to
        // V((2n+1)+1) = V(2*(n+1))
        //
        // This function returns
        // [0] = U(k)
        // [1] = V(k)
        // [2] = Q^n
        //
        // Where U(0) = 0 % n, U(1) = 1 % n
        //       V(0) = 2 % n, V(1) = P % n
        //***********************************************************************

        public static BigInteger[] LucasSequence(BigInteger P, BigInteger Q,
                                                 BigInteger k, BigInteger n)
        {
            if (k.DataLength == 1 && k._Data[0] == 0)
            {
                BigInteger[] result = new BigInteger[3];

                result[0] = 0; result[1] = 2 % n; result[2] = 1 % n;
                return result;
            }

            // calculate constant = b^(2k) / m
            // for Barrett Reduction
            BigInteger constant = new BigInteger();

            int nLen = n.DataLength << 1;
            constant._Data[nLen] = 0x00000001;
            constant.DataLength = nLen + 1;

            constant = constant / n;

            // calculate values of s and t
            int s = 0;

            for (int index = 0; index < k.DataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((k._Data[index] & mask) != 0)
                    {
                        index = k.DataLength;      // to break the outer loop
                        break;
                    }
                    mask <<= 1;
                    s++;
                }
            }

            BigInteger t = k >> s;

            //Console.WriteLine("s = " + s + " t = " + t);
            return LucasSequenceHelper(P, Q, t, n, constant, s);
        }
        public static BigInteger operator >>(BigInteger bi1, int shiftVal)
        {
            BigInteger result = new BigInteger(bi1);
            result.DataLength = shiftRight(result._Data, shiftVal);


            if ((bi1._Data[_MaxLength - 1] & 0x80000000) != 0) // negative
            {
                for (int i = _MaxLength - 1; i >= result.DataLength; i--)
                    result._Data[i] = 0xFFFFFFFF;

                uint mask = 0x80000000;
                for (int i = 0; i < 32; i++)
                {
                    if ((result._Data[result.DataLength - 1] & mask) != 0)
                        break;

                    result._Data[result.DataLength - 1] |= mask;
                    mask >>= 1;
                }
                result.DataLength = _MaxLength;
            }

            return result;
        }
        //***********************************************************************
        // Performs the calculation of the kth term in the Lucas Sequence.
        // For details of the algorithm, see reference [9].
        //
        // k must be odd.  i.e LSB == 1
        //***********************************************************************

        private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q,
                                                        BigInteger k, BigInteger n,
                                                        BigInteger constant, int s)
        {
            BigInteger[] result = new BigInteger[3];

            if ((k._Data[0] & 0x00000001) == 0)
                throw (new ArgumentException("Argument k must be odd."));

            int numbits = k.BitCount();
            uint mask = (uint)0x1 << ((numbits & 0x1F) - 1);

            // v = v0, v1 = v1, u1 = u1, Q_k = Q^0

            BigInteger v = 2 % n, Q_k = 1 % n,
                       v1 = P % n, u1 = Q_k;
            bool flag = true;

            for (int i = k.DataLength - 1; i >= 0; i--)     // iterate on the binary expansion of k
            {
                //Console.WriteLine("round");
                while (mask != 0)
                {
                    if (i == 0 && mask == 0x00000001)        // last bit
                        break;

                    if ((k._Data[i] & mask) != 0)             // bit is set
                    {
                        // index doubling with addition

                        u1 = (u1 * v1) % n;

                        v = ((v * v1) - (P * Q_k)) % n;
                        v1 = n.BarrettReduction(v1 * v1, n, constant);
                        v1 = (v1 - ((Q_k * Q) << 1)) % n;

                        if (flag)
                            flag = false;
                        else
                            Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);

                        Q_k = (Q_k * Q) % n;
                    }
                    else
                    {
                        // index doubling
                        u1 = ((u1 * v) - Q_k) % n;

                        v1 = ((v * v1) - (P * Q_k)) % n;
                        v = n.BarrettReduction(v * v, n, constant);
                        v = (v - (Q_k << 1)) % n;

                        if (flag)
                        {
                            Q_k = Q % n;
                            flag = false;
                        }
                        else
                            Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
                    }

                    mask >>= 1;
                }
                mask = 0x80000000;
            }

            // at this point u1 = u(n+1) and v = v(n)
            // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)

            u1 = ((u1 * v) - Q_k) % n;
            v = ((v * v1) - (P * Q_k)) % n;
            if (flag)
                flag = false;
            else
                Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);

            Q_k = (Q_k * Q) % n;


            for (int i = 0; i < s; i++)
            {
                // index doubling
                u1 = (u1 * v) % n;
                v = ((v * v) - (Q_k << 1)) % n;

                if (flag)
                {
                    Q_k = Q % n;
                    flag = false;
                }
                else
                    Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
            }

            result[0] = u1;
            result[1] = v;
            result[2] = Q_k;

            return result;
        }
        public static BigInteger operator -(BigInteger bi1)
        {
            // handle neg of zero separately since it'll cause an overflow
            // if we proceed.

            if (bi1.DataLength == 1 && bi1._Data[0] == 0)
                return (new BigInteger());

            BigInteger result = new BigInteger(bi1);

            // 1's complement
            for (int i = 0; i < _MaxLength; i++)
                result._Data[i] = (uint)(~(bi1._Data[i]));

            // add one to result of 1's complement
            long val, carry = 1;
            int index = 0;

            while (carry != 0 && index < _MaxLength)
            {
                val = (long)(result._Data[index]);
                val++;

                result._Data[index] = (uint)(val & 0xFFFFFFFF);
                carry = val >> 32;

                index++;
            }

            if ((bi1._Data[_MaxLength - 1] & 0x80000000) == (result._Data[_MaxLength - 1] & 0x80000000))
                throw (new ArithmeticException("Overflow in negation.\n"));

            result.DataLength = _MaxLength;

            while (result.DataLength > 1 && result._Data[result.DataLength - 1] == 0)
                result.DataLength--;
            return result;
        }
        //***********************************************************************
        // Modulo Exponentiation
        //***********************************************************************

        public BigInteger modPow(BigInteger exp, BigInteger n)
        {
            if ((exp._Data[_MaxLength - 1] & 0x80000000) != 0)
                throw (new ArithmeticException("Positive exponents only."));

            BigInteger resultNum = 1;
            BigInteger tempNum;
            bool thisNegative = false;

            if ((this._Data[_MaxLength - 1] & 0x80000000) != 0)   // negative this
            {
                tempNum = -this % n;
                thisNegative = true;
            }
            else
                tempNum = this % n;  // ensures (tempNum * tempNum) < b^(2k)

            if ((n._Data[_MaxLength - 1] & 0x80000000) != 0)   // negative n
                n = -n;

            // calculate constant = b^(2k) / m
            BigInteger constant = new BigInteger();

            int i = n.DataLength << 1;
            constant._Data[i] = 0x00000001;
            constant.DataLength = i + 1;

            constant = constant / n;
            int totalBits = exp.BitCount();
            int count = 0;

            // perform squaring and multiply exponentiation
            for (int pos = 0; pos < exp.DataLength; pos++)
            {
                uint mask = 0x01;
                //Console.WriteLine("pos = " + pos);

                for (int index = 0; index < 32; index++)
                {
                    if ((exp._Data[pos] & mask) != 0)
                        resultNum = BarrettReduction(resultNum * tempNum, n, constant);

                    mask <<= 1;

                    tempNum = BarrettReduction(tempNum * tempNum, n, constant);


                    if (tempNum.DataLength == 1 && tempNum._Data[0] == 1)
                    {
                        if (thisNegative && (exp._Data[0] & 0x1) != 0)    //odd exp
                            return -resultNum;
                        return resultNum;
                    }
                    count++;
                    if (count == totalBits)
                        break;
                }
            }

            if (thisNegative && (exp._Data[0] & 0x1) != 0)    //odd exp
                return -resultNum;

            return resultNum;
        }