Beispiel #1
0
        void buildHierarchy(List <uint> tempTree, buildData dat, BuildStats stats)
        {
            // create space for the first node
            tempTree.Add(3u << 30); // dummy leaf
            tempTree.Add(0);
            tempTree.Add(0);

            // seed bbox
            AABound gridBox = new AABound();

            gridBox.lo = bounds.Lo;
            gridBox.hi = bounds.Hi;
            AABound nodeBox = gridBox;

            // seed subdivide function
            subdivide(0, (int)(dat.numPrims - 1), tempTree, dat, gridBox, nodeBox, 0, 1, stats);
        }
Beispiel #2
0
        void subdivide(int left, int right, List <uint> tempTree, buildData dat, AABound gridBox, AABound nodeBox, int nodeIndex, int depth, BuildStats stats)
        {
            if ((right - left + 1) <= dat.maxPrims || depth >= 64)
            {
                // write leaf node
                stats.updateLeaf(depth, right - left + 1);
                createNode(tempTree, nodeIndex, left, right);
                return;
            }
            // calculate extents
            int   axis = -1, prevAxis, rightOrig;
            float clipL = float.NaN, clipR = float.NaN, prevClip = float.NaN;
            float split = float.NaN, prevSplit;
            bool  wasLeft = true;

            while (true)
            {
                prevAxis  = axis;
                prevSplit = split;
                // perform quick consistency checks
                Vector3 d = gridBox.hi - gridBox.lo;
                for (int i = 0; i < 3; i++)
                {
                    //if (nodeBox.hi[i] < gridBox.lo[i] || nodeBox.lo[i] > gridBox.hi[i])
                    //Log.outError(LogFilter.Server, "Reached tree area in error - discarding node with: {0} objects", right - left + 1);
                }
                // find longest axis
                axis  = (int)d.primaryAxis();
                split = 0.5f * (gridBox.lo[axis] + gridBox.hi[axis]);
                // partition L/R subsets
                clipL     = float.NegativeInfinity;
                clipR     = float.PositiveInfinity;
                rightOrig = right; // save this for later
                float nodeL = float.PositiveInfinity;
                float nodeR = float.NegativeInfinity;
                for (int i = left; i <= right;)
                {
                    int   obj    = (int)dat.indices[i];
                    float minb   = dat.primBound[obj].Lo[axis];
                    float maxb   = dat.primBound[obj].Hi[axis];
                    float center = (minb + maxb) * 0.5f;
                    if (center <= split)
                    {
                        // stay left
                        i++;
                        if (clipL < maxb)
                        {
                            clipL = maxb;
                        }
                    }
                    else
                    {
                        // move to the right most
                        int t = (int)dat.indices[i];
                        dat.indices[i]     = dat.indices[right];
                        dat.indices[right] = (uint)t;
                        right--;
                        if (clipR > minb)
                        {
                            clipR = minb;
                        }
                    }
                    nodeL = Math.Min(nodeL, minb);
                    nodeR = Math.Max(nodeR, maxb);
                }
                // check for empty space
                if (nodeL > nodeBox.lo[axis] && nodeR < nodeBox.hi[axis])
                {
                    float nodeBoxW = nodeBox.hi[axis] - nodeBox.lo[axis];
                    float nodeNewW = nodeR - nodeL;
                    // node box is too big compare to space occupied by primitives?
                    if (1.3f * nodeNewW < nodeBoxW)
                    {
                        stats.updateBVH2();
                        int nextIndex1 = tempTree.Count();
                        // allocate child
                        tempTree.Add(0);
                        tempTree.Add(0);
                        tempTree.Add(0);
                        // write bvh2 clip node
                        stats.updateInner();
                        tempTree[nodeIndex + 0] = (uint)((axis << 30) | (1 << 29) | nextIndex1);
                        tempTree[nodeIndex + 1] = floatToRawIntBits(nodeL);
                        tempTree[nodeIndex + 2] = floatToRawIntBits(nodeR);
                        // update nodebox and recurse
                        nodeBox.lo[axis] = nodeL;
                        nodeBox.hi[axis] = nodeR;
                        subdivide(left, rightOrig, tempTree, dat, gridBox, nodeBox, nextIndex1, depth + 1, stats);
                        return;
                    }
                }
                // ensure we are making progress in the subdivision
                if (right == rightOrig)
                {
                    // all left
                    if (prevAxis == axis && MathFunctions.fuzzyEq(prevSplit, split))
                    {
                        // we are stuck here - create a leaf
                        stats.updateLeaf(depth, right - left + 1);
                        createNode(tempTree, nodeIndex, left, right);
                        return;
                    }
                    if (clipL <= split)
                    {
                        // keep looping on left half
                        gridBox.hi[axis] = split;
                        prevClip         = clipL;
                        wasLeft          = true;
                        continue;
                    }
                    gridBox.hi[axis] = split;
                    prevClip         = float.NaN;
                }
                else if (left > right)
                {
                    // all right
                    right = rightOrig;
                    if (prevAxis == axis && MathFunctions.fuzzyEq(prevSplit, split))
                    {
                        // we are stuck here - create a leaf
                        stats.updateLeaf(depth, right - left + 1);
                        createNode(tempTree, nodeIndex, left, right);
                        return;
                    }

                    if (clipR >= split)
                    {
                        // keep looping on right half
                        gridBox.lo[axis] = split;
                        prevClip         = clipR;
                        wasLeft          = false;
                        continue;
                    }
                    gridBox.lo[axis] = split;
                    prevClip         = float.NaN;
                }
                else
                {
                    // we are actually splitting stuff
                    if (prevAxis != -1 && !float.IsNaN(prevClip))
                    {
                        // second time through - lets create the previous split
                        // since it produced empty space
                        int nextIndex0 = tempTree.Count;
                        // allocate child node
                        tempTree.Add(0);
                        tempTree.Add(0);
                        tempTree.Add(0);
                        if (wasLeft)
                        {
                            // create a node with a left child
                            // write leaf node
                            stats.updateInner();
                            tempTree[nodeIndex + 0] = (uint)((prevAxis << 30) | nextIndex0);
                            tempTree[nodeIndex + 1] = floatToRawIntBits(prevClip);
                            tempTree[nodeIndex + 2] = floatToRawIntBits(float.PositiveInfinity);
                        }
                        else
                        {
                            // create a node with a right child
                            // write leaf node
                            stats.updateInner();
                            tempTree[nodeIndex + 0] = (uint)((prevAxis << 30) | (nextIndex0 - 3));
                            tempTree[nodeIndex + 1] = floatToRawIntBits(float.NegativeInfinity);
                            tempTree[nodeIndex + 2] = floatToRawIntBits(prevClip);
                        }
                        // count stats for the unused leaf
                        depth++;
                        stats.updateLeaf(depth, 0);
                        // now we keep going as we are, with a new nodeIndex:
                        nodeIndex = nextIndex0;
                    }
                    break;
                }
            }
            // compute index of child nodes
            int nextIndex = tempTree.Count;
            // allocate left node
            int nl = right - left + 1;
            int nr = rightOrig - (right + 1) + 1;

            if (nl > 0)
            {
                tempTree.Add(0);
                tempTree.Add(0);
                tempTree.Add(0);
            }
            else
            {
                nextIndex -= 3;
            }
            // allocate right node
            if (nr > 0)
            {
                tempTree.Add(0);
                tempTree.Add(0);
                tempTree.Add(0);
            }
            // write leaf node
            stats.updateInner();
            tempTree[nodeIndex + 0] = (uint)((axis << 30) | nextIndex);
            tempTree[nodeIndex + 1] = floatToRawIntBits(clipL);
            tempTree[nodeIndex + 2] = floatToRawIntBits(clipR);
            // prepare L/R child boxes
            AABound gridBoxL = gridBox;
            AABound gridBoxR = gridBox;
            AABound nodeBoxL = nodeBox;
            AABound nodeBoxR = nodeBox;

            gridBoxL.hi[axis] = gridBoxR.lo[axis] = split;
            nodeBoxL.hi[axis] = clipL;
            nodeBoxR.lo[axis] = clipR;
            // recurse
            if (nl > 0)
            {
                subdivide(left, right, tempTree, dat, gridBoxL, nodeBoxL, nextIndex, depth + 1, stats);
            }
            else
            {
                stats.updateLeaf(depth + 1, 0);
            }
            if (nr > 0)
            {
                subdivide(right + 1, rightOrig, tempTree, dat, gridBoxR, nodeBoxR, nextIndex + 3, depth + 1, stats);
            }
            else
            {
                stats.updateLeaf(depth + 1, 0);
            }
        }