Beispiel #1
0
        // Compute the optimal bit lengths for a tree and update the total bit length
        // for the current block.
        // IN assertion: the fields freq and dad are set, heap[heap_max] and
        //    above are the tree nodes sorted by increasing frequency.
        // OUT assertions: the field len is set to the optimal bit length, the
        //     array bl_count contains the frequencies for each bit length.
        //     The length opt_len is updated; static_len is also updated if stree is
        //     not null.
        internal void gen_bitlen(Deflate s)
        {
            short[] tree = dyn_tree;
            short[] stree = stat_desc.static_tree;
            int[] extra = stat_desc.extra_bits;
            int base_Renamed = stat_desc.extra_base;
            int max_length = stat_desc.max_length;
            int h; // heap index
            int n, m; // iterate over the tree elements
            int bits; // bit length
            int xbits; // extra bits
            short f; // frequency
            int overflow = 0; // number of elements with bit length too large

            for (bits = 0; bits <= MAX_BITS; bits++)
                s.bl_count[bits] = 0;

            // In a first pass, compute the optimal bit lengths (which may
            // overflow in the case of the bit length tree).
            tree[s.heap[s.heap_max] * 2 + 1] = 0; // root of the heap

            for (h = s.heap_max + 1; h < HEAP_SIZE; h++)
            {
                n = s.heap[h];
                bits = tree[tree[n * 2 + 1] * 2 + 1] + 1;
                if (bits > max_length)
                {
                    bits = max_length; overflow++;
                }
                tree[n * 2 + 1] = (short) bits;
                // We overwrite tree[n*2+1] which is no longer needed

                if (n > max_code)
                    continue; // not a leaf node

                s.bl_count[bits]++;
                xbits = 0;
                if (n >= base_Renamed)
                    xbits = extra[n - base_Renamed];
                f = tree[n * 2];
                s.opt_len += f * (bits + xbits);
                if (stree != null)
                    s.static_len += f * (stree[n * 2 + 1] + xbits);
            }
            if (overflow == 0)
                return ;

            // This happens for example on obj2 and pic of the Calgary corpus
            // Find the first bit length which could increase:
            do
            {
                bits = max_length - 1;
                while (s.bl_count[bits] == 0)
                    bits--;
                s.bl_count[bits]--; // move one leaf down the tree
                s.bl_count[bits + 1] = (short) (s.bl_count[bits + 1] + 2); // move one overflow item as its brother
                s.bl_count[max_length]--;
                // The brother of the overflow item also moves one step up,
                // but this does not affect bl_count[max_length]
                overflow -= 2;
            }
            while (overflow > 0);

            for (bits = max_length; bits != 0; bits--)
            {
                n = s.bl_count[bits];
                while (n != 0)
                {
                    m = s.heap[--h];
                    if (m > max_code)
                        continue;
                    if (tree[m * 2 + 1] != bits)
                    {
                        s.opt_len = (int) (s.opt_len + ((long) bits - (long) tree[m * 2 + 1]) * (long) tree[m * 2]);
                        tree[m * 2 + 1] = (short) bits;
                    }
                    n--;
                }
            }
        }
Beispiel #2
0
 public int deflateInit(int level, int bits)
 {
     dstate = new Deflate();
     return dstate.deflateInit(this, level, bits);
 }
Beispiel #3
0
        // Construct one Huffman tree and assigns the code bit strings and lengths.
        // Update the total bit length for the current block.
        // IN assertion: the field freq is set for all tree elements.
        // OUT assertions: the fields len and code are set to the optimal bit length
        //     and corresponding code. The length opt_len is updated; static_len is
        //     also updated if stree is not null. The field max_code is set.
        internal void build_tree(Deflate s)
        {
            short[] tree = dyn_tree;
            short[] stree = stat_desc.static_tree;
            int elems = stat_desc.elems;
            int n, m; // iterate over heap elements
            int max_code = - 1; // largest code with non zero frequency
            int node; // new node being created

            // Construct the initial heap, with least frequent element in
            // heap[1]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
            // heap[0] is not used.
            s.heap_len = 0;
            s.heap_max = HEAP_SIZE;

            for (n = 0; n < elems; n++)
            {
                if (tree[n * 2] != 0)
                {
                    s.heap[++s.heap_len] = max_code = n;
                    s.depth[n] = 0;
                }
                else
                {
                    tree[n * 2 + 1] = 0;
                }
            }

            // The pkzip format requires that at least one distance code exists,
            // and that at least one bit should be sent even if there is only one
            // possible code. So to avoid special checks later on we force at least
            // two codes of non zero frequency.
            while (s.heap_len < 2)
            {
                node = s.heap[++s.heap_len] = (max_code < 2?++max_code:0);
                tree[node * 2] = 1;
                s.depth[node] = 0;
                s.opt_len--;
                if (stree != null)
                    s.static_len -= stree[node * 2 + 1];
                // node is 0 or 1 so it does not have extra bits
            }
            this.max_code = max_code;

            // The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
            // establish sub-heaps of increasing lengths:

            for (n = s.heap_len / 2; n >= 1; n--)
                s.pqdownheap(tree, n);

            // Construct the Huffman tree by repeatedly combining the least two
            // frequent nodes.

            node = elems; // next internal node of the tree
            do
            {
                // n = node of least frequency
                n = s.heap[1];
                s.heap[1] = s.heap[s.heap_len--];
                s.pqdownheap(tree, 1);
                m = s.heap[1]; // m = node of next least frequency

                s.heap[--s.heap_max] = n; // keep the nodes sorted by frequency
                s.heap[--s.heap_max] = m;

                // Create a new node father of n and m
                tree[node * 2] = (short) (tree[n * 2] + tree[m * 2]);
                s.depth[node] = (byte) (System.Math.Max((byte) s.depth[n], (byte) s.depth[m]) + 1);
                tree[n * 2 + 1] = tree[m * 2 + 1] = (short) node;

                // and insert the new node in the heap
                s.heap[1] = node++;
                s.pqdownheap(tree, 1);
            }
            while (s.heap_len >= 2);

            s.heap[--s.heap_max] = s.heap[1];

            // At this point, the fields freq and dad are set. We can now
            // generate the bit lengths.

            gen_bitlen(s);

            // The field len is now set, we can generate the bit codes
            gen_codes(tree, max_code, s.bl_count);
        }
Beispiel #4
0
 public int deflateEnd()
 {
     if (dstate == null)
         return Z_STREAM_ERROR;
     int ret = dstate.deflateEnd();
     dstate = null;
     return ret;
 }