Beispiel #1
0
        private void btAnalyse_Click(object sender, EventArgs e)
        {
            WorkProgress wp = new WorkProgress();

            wp.PBar = pbProg;
            if (ckTrim.Checked)
            {
                TrimWaves((int)tbTrimThres.Value);
            }
            if (ckNormalize.Checked && cbNormType.SelectedIndex >= 0)
            {
                NormalizeWaves(cbNormType.SelectedIndex);
            }
            if (ckOverlap.Checked)
            {
                DetectBestOverlap((int)tbOverlapSamples.Value, wp);
            }

/*            if (AnalyzeBitwise(wp))
 *          {
 *              MessageBox.Show("Compared samples are BITWISE IDENTICAL\nNo more analysis needed", "Good", MessageBoxButtons.OK, MessageBoxIcon.Information);
 *              return;
 *          }*/
            AnalyzeTime(wp);
            AnalyzeSpectrum(wp);
        }
Beispiel #2
0
        public void DetectBestOverlap(int iInterval, WorkProgress iWP)
        {
            float CrossCorr = 0, BestCrossCorr = 0;
            int   bestI = 0;

            lbCurStep.Text = "Detecting best overlap interval";
            float[] data1 = file1.GetData()[cbChan1.SelectedIndex];
            float[] data2 = file2.GetData()[cbChan2.SelectedIndex];
            for (int i = -iInterval; i < iInterval; i++)
            {
                CrossCorr = MathLib.CrossCorrelation(data1, data2, i);
                if (CrossCorr > BestCrossCorr)
                {
                    BestCrossCorr      = CrossCorr;
                    bestI              = i;
                    lbBestOverlap.Text = i.ToString();
                    lbBestOverlap.Refresh();
                }

                iWP.UpdateProgress(100 * (i + iInterval) / 2 / iInterval);
            }

            if (bestI == 0)
            {
                return;
            }

            if (bestI > 0)
            {
                file2.SkipFirstSamples((uint)bestI);
            }
            else
            {
                file1.SkipFirstSamples((uint)Math.Abs(bestI));
            }
            lbInfo1.Text = file1.NSamples.ToString() + " samples";
            lbInfo2.Text = file2.NSamples.ToString() + " samples";
            w1.Refresh();
            w2.Refresh();
        }
Beispiel #3
0
        public void AnalyzeTime(WorkProgress iWP)
        {
            lbCurStep.Text = "Time Domain Analysis";
            float[] difArr;
            float[] data1 = file1.GetData()[cbChan1.SelectedIndex];
            float[] data2 = file2.GetData()[cbChan2.SelectedIndex];
            iWP.UpdateProgress(0);

            UInt32 len = Math.Min(file1.NSamples, file2.NSamples);

            uint   skip = 100;
            UInt32 c    = 0;

            difArr = new float[len / skip + 1];
            spTimeDiff.ForceYPeak = 100;


            for (UInt32 i = 0; i < len; i += skip, c++)
            {
                float avg = 0;
                for (UInt32 n = 0; n < skip && i + n < len; n++)
                {
                    avg += Math.Abs(data1[i + n] - data2[i + n]);
                }
                avg /= skip;

                difArr[c] = avg * 100 / file1.MaxAllowableValue;
                if (c % 10 == 0)
                {
                    iWP.UpdateProgress((int)(i * 100 / len));
                    spTimeDiff.FFTData = difArr;
                    spTimeDiff.Refresh();
                }
            }

            spTimeDiff.FFTData = difArr;
            spTimeDiff.Refresh();
            lbAvgErr.Text = Math.Round(MathLib.ArrayAverage(difArr, difArr.Length), 5).ToString();
        }
Beispiel #4
0
        public bool AnalyzeBitwise(WorkProgress iWP)
        {
            lbCurStep.Text = "Bitwise Analysis";
            iWP.UpdateProgress(0);
            bool   identical = true;
            UInt32 len       = Math.Min(file1.NSamples, file2.NSamples);

            float[] data1 = file1.GetData()[cbChan1.SelectedIndex];
            float[] data2 = file2.GetData()[cbChan2.SelectedIndex];


            for (UInt32 i = 0; i < len; i++)
            {
                if (data1[i] != data2[i])
                {
                    identical = false;
                    break;
                    ;
                }
            }

            iWP.UpdateProgress(100);
            return(identical);
        }
Beispiel #5
0
        public void AnalyzeSpectrum(WorkProgress iWP)
        {
            lbCurStep.Text = "Frequency Domain Analysis";
            iWP.UpdateProgress(0);
            float[] data1       = file1.GetData()[cbChan1.SelectedIndex];
            float[] data2       = file2.GetData()[cbChan2.SelectedIndex];
            float[] globDiffArr = new float[MathLib.FFT_Samples];

            UInt32 pos, steps;

            UInt32 len = Math.Min(file1.NSamples, file2.NSamples);
            UInt32 SkipSum;

            switch (cbFFTQual.SelectedIndex)
            {
            case 0:
                MathLib.SetQuality(MathLib.FFT_Quality.Low);
                break;

            case 1:
                MathLib.SetQuality(MathLib.FFT_Quality.Average);
                break;

            case 2:
                MathLib.SetQuality(MathLib.FFT_Quality.Good);
                break;

            case 3:
                MathLib.SetQuality(MathLib.FFT_Quality.Best);
                ;
                break;

            default:
                MathLib.SetQuality(MathLib.FFT_Quality.Average);
                break;
            }


            switch (cbFFTPrecision.SelectedIndex)
            {
            case 0:
                SkipSum = 1000;
                break;

            case 1:
                SkipSum = 500;
                break;

            case 2:
                SkipSum = 100;
                break;

            case 3:
                SkipSum = 50;
                break;

            default:
                SkipSum = 100;
                break;
            }

            spDiff.OnlyPositive = false;
            spDiff.ForceYPeak   = 200;
            spErr.ForceYPeak    = 100;
            float[] ErrorArr = new float[(long)Math.Ceiling((decimal)len / SkipSum)];
            for (pos = 0, steps = 0; pos < len - MathLib.FFT_Samples - 1; pos += SkipSum, steps++)
            {
                float[] ft1 = MathLib.FFT(data1, pos);
                float[] ft2 = MathLib.FFT(data2, pos);
                sp1.FFTData = ft1;
                sp2.FFTData = ft2;
                float[] difArr = MathLib.SpectrumAttenuation_dB(ft1, ft2);
                MathLib.ArraySum(ref globDiffArr, difArr);

                float AbsErr = 0;
                for (UInt32 i = 0; i < difArr.Length; i++)
                {
                    AbsErr += Math.Abs(difArr[i]);
                }
                AbsErr         /= difArr.Length;
                ErrorArr[steps] = AbsErr;

                spErr.FFTData = ErrorArr;
                spErr.Refresh();

                spDiff.FFTData = difArr;
                spDiff.Refresh();
                if (steps % 10 == 0)
                {
                    iWP.UpdateProgress((int)(pos * 100 / len));
                }
            }

            MathLib.ArrayRatio(ref globDiffArr, steps - 1);
            spDiff.FFTData = globDiffArr;
            spDiff.Refresh();

            lbFreqAvgErr.Text = MathLib.ArrayAverage(ErrorArr, ErrorArr.Length).ToString();
        }