Beispiel #1
0
        public void StoreImpulses()
        {
            for (int i = 0; i < _count; ++i)
            {
                ContactVelocityConstraint vc = _velocityConstraints[i];
                Manifold manifold            = _contacts[vc.ContactIndex].Manifold;

                for (int j = 0; j < vc.PointCount; ++j)
                {
                    ManifoldPoint point = manifold.Points[j];
                    point.NormalImpulse  = vc.Points[j].NormalImpulse;
                    point.TangentImpulse = vc.Points[j].TangentImpulse;
                    manifold.Points[j]   = point;
                }

                _contacts[vc.ContactIndex].Manifold = manifold;
            }
        }
Beispiel #2
0
		void onPostSolve( Contact contact, ContactVelocityConstraint impulse )
		{
			if( !isBroken )
			{
				if( parts.Contains( contact.fixtureA ) || parts.Contains( contact.fixtureB ) )
				{
					float maxImpulse = 0.0f;
					int count = contact.manifold.pointCount;

					for( int i = 0; i < count; ++i )
					{
						maxImpulse = Math.Max( maxImpulse, impulse.points[i].normalImpulse );
					}

					if( maxImpulse > strength )
					{
						// Flag the body for breaking.
						_break = true;
					}
				}
			}
		}
Beispiel #3
0
        public void WarmStart()
        {
            // Warm start.
            for (int i = 0; i < _count; ++i)
            {
                ContactVelocityConstraint vc = _velocityConstraints[i];

                int   indexA     = vc.IndexA;
                int   indexB     = vc.IndexB;
                float mA         = vc.InvMassA;
                float iA         = vc.InvIA;
                float mB         = vc.InvMassB;
                float iB         = vc.InvIB;
                int   pointCount = vc.PointCount;

                System.Numerics.Vector2 vA = _velocities[indexA].V;
                float wA = _velocities[indexA].W;
                System.Numerics.Vector2 vB = _velocities[indexB].V;
                float wB = _velocities[indexB].W;

                System.Numerics.Vector2 normal  = vc.Normal;
                System.Numerics.Vector2 tangent = MathUtils.Cross(normal, 1.0f);

                for (int j = 0; j < pointCount; ++j)
                {
                    VelocityConstraintPoint vcp = vc.Points[j];
                    System.Numerics.Vector2 P   = vcp.NormalImpulse * normal + vcp.TangentImpulse * tangent;
                    wA -= iA * MathUtils.Cross(vcp.RA, P);
                    vA -= mA * P;
                    wB += iB * MathUtils.Cross(vcp.RB, P);
                    vB += mB * P;
                }

                _velocities[indexA].V = vA;
                _velocities[indexA].W = wA;
                _velocities[indexB].V = vB;
                _velocities[indexB].W = wB;
            }
        }
Beispiel #4
0
        public void warmStart()
        {
            // Warm start.
            for (int i = 0; i < _count; ++i)
            {
                ContactVelocityConstraint vc = _velocityConstraints[i];

                int   indexA     = vc.indexA;
                int   indexB     = vc.indexB;
                float mA         = vc.invMassA;
                float iA         = vc.invIA;
                float mB         = vc.invMassB;
                float iB         = vc.invIB;
                int   pointCount = vc.pointCount;

                Vector2 vA = _velocities[indexA].v;
                float   wA = _velocities[indexA].w;
                Vector2 vB = _velocities[indexB].v;
                float   wB = _velocities[indexB].w;

                Vector2 normal  = vc.normal;
                Vector2 tangent = MathUtils.cross(normal, 1.0f);

                for (int j = 0; j < pointCount; ++j)
                {
                    VelocityConstraintPoint vcp = vc.points[j];
                    Vector2 P = vcp.normalImpulse * normal + vcp.tangentImpulse * tangent;
                    wA -= iA * MathUtils.cross(vcp.rA, P);
                    vA -= mA * P;
                    wB += iB * MathUtils.cross(vcp.rB, P);
                    vB += mB * P;
                }

                _velocities[indexA].v = vA;
                _velocities[indexA].w = wA;
                _velocities[indexB].v = vB;
                _velocities[indexB].w = wB;
            }
        }
Beispiel #5
0
        public void Reset(TimeStep step, int count, Contact[] contacts, Position[] positions, Velocity[] velocities)
        {
            _step       = step;
            _count      = count;
            _positions  = positions;
            _velocities = velocities;
            _contacts   = contacts;

            // grow the array
            if (_velocityConstraints == null || _velocityConstraints.Length < count)
            {
                _velocityConstraints = new ContactVelocityConstraint[count * 2];
                _positionConstraints = new ContactPositionConstraint[count * 2];

                for (int i = 0; i < _velocityConstraints.Length; i++)
                {
                    _velocityConstraints[i] = new ContactVelocityConstraint();
                }

                for (int i = 0; i < _positionConstraints.Length; i++)
                {
                    _positionConstraints[i] = new ContactPositionConstraint();
                }
            }

            // Initialize position independent portions of the constraints.
            for (int i = 0; i < _count; ++i)
            {
                var contact = contacts[i];

                var fixtureA = contact.FixtureA;
                var fixtureB = contact.FixtureB;
                var shapeA   = fixtureA.Shape;
                var shapeB   = fixtureB.Shape;
                var radiusA  = shapeA.Radius;
                var radiusB  = shapeB.Radius;
                var bodyA    = fixtureA.Body;
                var bodyB    = fixtureB.Body;
                var manifold = contact.Manifold;

                var pointCount = manifold.PointCount;
                Debug.Assert(pointCount > 0);

                var vc = _velocityConstraints[i];
                vc.Friction     = contact.Friction;
                vc.Restitution  = contact.Restitution;
                vc.TangentSpeed = contact.TangentSpeed;
                vc.IndexA       = bodyA.IslandIndex;
                vc.IndexB       = bodyB.IslandIndex;
                vc.InvMassA     = bodyA._invMass;
                vc.InvMassB     = bodyB._invMass;
                vc.InvIA        = bodyA._invI;
                vc.InvIB        = bodyB._invI;
                vc.ContactIndex = i;
                vc.PointCount   = pointCount;
                vc.K.SetZero();
                vc.NormalMass.SetZero();

                var pc = _positionConstraints[i];
                pc.IndexA       = bodyA.IslandIndex;
                pc.IndexB       = bodyB.IslandIndex;
                pc.InvMassA     = bodyA._invMass;
                pc.InvMassB     = bodyB._invMass;
                pc.LocalCenterA = bodyA._sweep.LocalCenter;
                pc.LocalCenterB = bodyB._sweep.LocalCenter;
                pc.InvIA        = bodyA._invI;
                pc.InvIB        = bodyB._invI;
                pc.LocalNormal  = manifold.LocalNormal;
                pc.LocalPoint   = manifold.LocalPoint;
                pc.PointCount   = pointCount;
                pc.RadiusA      = radiusA;
                pc.RadiusB      = radiusB;
                pc.Type         = manifold.Type;

                for (int j = 0; j < pointCount; ++j)
                {
                    var cp  = manifold.Points[j];
                    var vcp = vc.Points[j];

                    if (Settings.EnableWarmstarting)
                    {
                        vcp.NormalImpulse  = _step.DtRatio * cp.NormalImpulse;
                        vcp.TangentImpulse = _step.DtRatio * cp.TangentImpulse;
                    }
                    else
                    {
                        vcp.NormalImpulse  = 0.0f;
                        vcp.TangentImpulse = 0.0f;
                    }

                    vcp.RA           = System.Numerics.Vector2.Zero;
                    vcp.RB           = System.Numerics.Vector2.Zero;
                    vcp.NormalMass   = 0.0f;
                    vcp.TangentMass  = 0.0f;
                    vcp.VelocityBias = 0.0f;

                    pc.LocalPoints[j] = cp.LocalPoint;
                }
            }
        }
Beispiel #6
0
        public void SolveVelocityConstraints()
        {
            for (int i = 0; i < _count; ++i)
            {
                ContactVelocityConstraint vc = _velocityConstraints[i];

                int   indexA     = vc.IndexA;
                int   indexB     = vc.IndexB;
                float mA         = vc.InvMassA;
                float iA         = vc.InvIA;
                float mB         = vc.InvMassB;
                float iB         = vc.InvIB;
                int   pointCount = vc.PointCount;

                System.Numerics.Vector2 vA = _velocities[indexA].V;
                float wA = _velocities[indexA].W;
                System.Numerics.Vector2 vB = _velocities[indexB].V;
                float wB = _velocities[indexB].W;

                System.Numerics.Vector2 normal  = vc.Normal;
                System.Numerics.Vector2 tangent = MathUtils.Cross(normal, 1.0f);
                float friction = vc.Friction;

                Debug.Assert(pointCount == 1 || pointCount == 2);

                // Solve tangent constraints first because non-penetration is more important
                // than friction.
                for (int j = 0; j < pointCount; ++j)
                {
                    VelocityConstraintPoint vcp = vc.Points[j];

                    // Relative velocity at contact
                    System.Numerics.Vector2 dv = vB + MathUtils.Cross(wB, vcp.RB) - vA - MathUtils.Cross(wA, vcp.RA);

                    // Compute tangent force
                    float vt     = System.Numerics.Vector2.Dot(dv, tangent) - vc.TangentSpeed;
                    float lambda = vcp.TangentMass * (-vt);

                    // b2Clamp the accumulated force
                    float maxFriction = friction * vcp.NormalImpulse;
                    float newImpulse  = MathUtils.Clamp(vcp.TangentImpulse + lambda, -maxFriction, maxFriction);
                    lambda             = newImpulse - vcp.TangentImpulse;
                    vcp.TangentImpulse = newImpulse;

                    // Apply contact impulse
                    System.Numerics.Vector2 P = lambda * tangent;

                    vA -= mA * P;
                    wA -= iA * MathUtils.Cross(vcp.RA, P);

                    vB += mB * P;
                    wB += iB * MathUtils.Cross(vcp.RB, P);
                }

                // Solve normal constraints
                if (vc.PointCount == 1)
                {
                    VelocityConstraintPoint vcp = vc.Points[0];

                    // Relative velocity at contact
                    System.Numerics.Vector2 dv = vB + MathUtils.Cross(wB, vcp.RB) - vA - MathUtils.Cross(wA, vcp.RA);

                    // Compute normal impulse
                    float vn     = System.Numerics.Vector2.Dot(dv, normal);
                    float lambda = -vcp.NormalMass * (vn - vcp.VelocityBias);

                    // b2Clamp the accumulated impulse
                    float newImpulse = Math.Max(vcp.NormalImpulse + lambda, 0.0f);
                    lambda            = newImpulse - vcp.NormalImpulse;
                    vcp.NormalImpulse = newImpulse;

                    // Apply contact impulse
                    System.Numerics.Vector2 P = lambda * normal;
                    vA -= mA * P;
                    wA -= iA * MathUtils.Cross(vcp.RA, P);

                    vB += mB * P;
                    wB += iB * MathUtils.Cross(vcp.RB, P);
                }
                else
                {
                    // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite).
                    // Build the mini LCP for this contact patch
                    //
                    // vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2
                    //
                    // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n )
                    // b = vn0 - velocityBias
                    //
                    // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i
                    // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases
                    // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid
                    // solution that satisfies the problem is chosen.
                    //
                    // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires
                    // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i).
                    //
                    // Substitute:
                    //
                    // x = a + d
                    //
                    // a := old total impulse
                    // x := new total impulse
                    // d := incremental impulse
                    //
                    // For the current iteration we extend the formula for the incremental impulse
                    // to compute the new total impulse:
                    //
                    // vn = A * d + b
                    //    = A * (x - a) + b
                    //    = A * x + b - A * a
                    //    = A * x + b'
                    // b' = b - A * a;

                    VelocityConstraintPoint cp1 = vc.Points[0];
                    VelocityConstraintPoint cp2 = vc.Points[1];

                    System.Numerics.Vector2 a = new System.Numerics.Vector2(cp1.NormalImpulse, cp2.NormalImpulse);
                    Debug.Assert(a.X >= 0.0f && a.Y >= 0.0f);

                    // Relative velocity at contact
                    System.Numerics.Vector2 dv1 = vB + MathUtils.Cross(wB, cp1.RB) - vA - MathUtils.Cross(wA, cp1.RA);
                    System.Numerics.Vector2 dv2 = vB + MathUtils.Cross(wB, cp2.RB) - vA - MathUtils.Cross(wA, cp2.RA);

                    // Compute normal velocity
                    float vn1 = System.Numerics.Vector2.Dot(dv1, normal);
                    float vn2 = System.Numerics.Vector2.Dot(dv2, normal);

                    System.Numerics.Vector2 b = new System.Numerics.Vector2();
                    b.X = vn1 - cp1.VelocityBias;
                    b.Y = vn2 - cp2.VelocityBias;

                    // Compute b'
                    b -= MathUtils.Mul(ref vc.K, a);

#if B2_DEBUG_SOLVER
                    const float k_errorTol = 1e-3f;
                    //B2_NOT_USED(k_errorTol);
#endif

                    for (;;)
                    {
                        //
                        // Case 1: vn = 0
                        //
                        // 0 = A * x + b'
                        //
                        // Solve for x:
                        //
                        // x = - inv(A) * b'
                        //
                        System.Numerics.Vector2 x = -MathUtils.Mul(ref vc.NormalMass, b);

                        if (x.X >= 0.0f && x.Y >= 0.0f)
                        {
                            // Get the incremental impulse
                            System.Numerics.Vector2 d = x - a;

                            // Apply incremental impulse
                            System.Numerics.Vector2 P1 = d.X * normal;
                            System.Numerics.Vector2 P2 = d.Y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (MathUtils.Cross(cp1.RA, P1) + MathUtils.Cross(cp2.RA, P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (MathUtils.Cross(cp1.RB, P1) + MathUtils.Cross(cp2.RB, P2));

                            // Accumulate
                            cp1.NormalImpulse = x.X;
                            cp2.NormalImpulse = x.Y;

#if B2_DEBUG_SOLVER
                            // Postconditions
                            dv1 = vB + MathUtils.Cross(wB, cp1.rB) - vA - MathUtils.Cross(wA, cp1.rA);
                            dv2 = vB + MathUtils.Cross(wB, cp2.rB) - vA - MathUtils.Cross(wA, cp2.rA);

                            // Compute normal velocity
                            vn1 = System.Numerics.Vector2.Dot(dv1, normal);
                            vn2 = System.Numerics.Vector2.Dot(dv2, normal);

                            b2Assert(b2Abs(vn1 - cp1.velocityBias) < k_errorTol);
                            b2Assert(b2Abs(vn2 - cp2.velocityBias) < k_errorTol);
#endif
                            break;
                        }

                        //
                        // Case 2: vn1 = 0 and x2 = 0
                        //
                        //   0 = a11 * x1 + a12 * 0 + b1'
                        // vn2 = a21 * x1 + a22 * 0 + b2'
                        //
                        x.X = -cp1.NormalMass * b.X;
                        x.Y = 0.0f;
                        vn1 = 0.0f;
                        vn2 = vc.K.Ex.Y * x.X + b.Y;

                        if (x.X >= 0.0f && vn2 >= 0.0f)
                        {
                            // Get the incremental impulse
                            System.Numerics.Vector2 d = x - a;

                            // Apply incremental impulse
                            System.Numerics.Vector2 P1 = d.X * normal;
                            System.Numerics.Vector2 P2 = d.Y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (MathUtils.Cross(cp1.RA, P1) + MathUtils.Cross(cp2.RA, P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (MathUtils.Cross(cp1.RB, P1) + MathUtils.Cross(cp2.RB, P2));

                            // Accumulate
                            cp1.NormalImpulse = x.X;
                            cp2.NormalImpulse = x.Y;

#if B2_DEBUG_SOLVER
                            // Postconditions
                            dv1 = vB + MathUtils.Cross(wB, cp1.rB) - vA - MathUtils.Cross(wA, cp1.rA);

                            // Compute normal velocity
                            vn1 = System.Numerics.Vector2.Dot(dv1, normal);

                            b2Assert(b2Abs(vn1 - cp1.velocityBias) < k_errorTol);
#endif
                            break;
                        }


                        //
                        // Case 3: vn2 = 0 and x1 = 0
                        //
                        // vn1 = a11 * 0 + a12 * x2 + b1'
                        //   0 = a21 * 0 + a22 * x2 + b2'
                        //
                        x.X = 0.0f;
                        x.Y = -cp2.NormalMass * b.Y;
                        vn1 = vc.K.Ey.X * x.Y + b.X;
                        vn2 = 0.0f;

                        if (x.Y >= 0.0f && vn1 >= 0.0f)
                        {
                            // Resubstitute for the incremental impulse
                            System.Numerics.Vector2 d = x - a;

                            // Apply incremental impulse
                            System.Numerics.Vector2 P1 = d.X * normal;
                            System.Numerics.Vector2 P2 = d.Y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (MathUtils.Cross(cp1.RA, P1) + MathUtils.Cross(cp2.RA, P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (MathUtils.Cross(cp1.RB, P1) + MathUtils.Cross(cp2.RB, P2));

                            // Accumulate
                            cp1.NormalImpulse = x.X;
                            cp2.NormalImpulse = x.Y;

#if B2_DEBUG_SOLVER
                            // Postconditions
                            dv2 = vB + MathUtils.Cross(wB, cp2.rB) - vA - MathUtils.Cross(wA, cp2.rA);

                            // Compute normal velocity
                            vn2 = System.Numerics.Vector2.Dot(dv2, normal);

                            b2Assert(b2Abs(vn2 - cp2.velocityBias) < k_errorTol);
#endif
                            break;
                        }

                        //
                        // Case 4: x1 = 0 and x2 = 0
                        //
                        // vn1 = b1
                        // vn2 = b2;
                        x.X = 0.0f;
                        x.Y = 0.0f;
                        vn1 = b.X;
                        vn2 = b.Y;

                        if (vn1 >= 0.0f && vn2 >= 0.0f)
                        {
                            // Resubstitute for the incremental impulse
                            System.Numerics.Vector2 d = x - a;

                            // Apply incremental impulse
                            System.Numerics.Vector2 P1 = d.X * normal;
                            System.Numerics.Vector2 P2 = d.Y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (MathUtils.Cross(cp1.RA, P1) + MathUtils.Cross(cp2.RA, P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (MathUtils.Cross(cp1.RB, P1) + MathUtils.Cross(cp2.RB, P2));

                            // Accumulate
                            cp1.NormalImpulse = x.X;
                            cp2.NormalImpulse = x.Y;

                            break;
                        }

                        // No solution, give up. This is hit sometimes, but it doesn't seem to matter.
                        break;
                    }
                }

                _velocities[indexA].V = vA;
                _velocities[indexA].W = wA;
                _velocities[indexB].V = vB;
                _velocities[indexB].W = wB;
            }
        }
Beispiel #7
0
        public void InitializeVelocityConstraints()
        {
            for (int i = 0; i < _count; ++i)
            {
                ContactVelocityConstraint vc = _velocityConstraints[i];
                ContactPositionConstraint pc = _positionConstraints[i];

                float    radiusA  = pc.RadiusA;
                float    radiusB  = pc.RadiusB;
                Manifold manifold = _contacts[vc.ContactIndex].Manifold;

                int indexA = vc.IndexA;
                int indexB = vc.IndexB;

                float mA = vc.InvMassA;
                float mB = vc.InvMassB;
                float iA = vc.InvIA;
                float iB = vc.InvIB;
                System.Numerics.Vector2 localCenterA = pc.LocalCenterA;
                System.Numerics.Vector2 localCenterB = pc.LocalCenterB;

                System.Numerics.Vector2 cA = _positions[indexA].C;
                float aA = _positions[indexA].A;
                System.Numerics.Vector2 vA = _velocities[indexA].V;
                float wA = _velocities[indexA].W;

                System.Numerics.Vector2 cB = _positions[indexB].C;
                float aB = _positions[indexB].A;
                System.Numerics.Vector2 vB = _velocities[indexB].V;
                float wB = _velocities[indexB].W;

                Debug.Assert(manifold.PointCount > 0);

                Transform xfA = new Transform();
                Transform xfB = new Transform();
                xfA.Q.Set(aA);
                xfB.Q.Set(aB);
                xfA.P = cA - MathUtils.Mul(xfA.Q, localCenterA);
                xfB.P = cB - MathUtils.Mul(xfB.Q, localCenterB);

                System.Numerics.Vector2 normal;
                FixedArray2 <System.Numerics.Vector2> points;
                WorldManifold.Initialize(ref manifold, ref xfA, radiusA, ref xfB, radiusB, out normal, out points);

                vc.Normal = normal;

                int pointCount = vc.PointCount;
                for (int j = 0; j < pointCount; ++j)
                {
                    VelocityConstraintPoint vcp = vc.Points[j];

                    vcp.RA = points[j] - cA;
                    vcp.RB = points[j] - cB;

                    float rnA = MathUtils.Cross(vcp.RA, vc.Normal);
                    float rnB = MathUtils.Cross(vcp.RB, vc.Normal);

                    float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB;

                    vcp.NormalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f;

                    System.Numerics.Vector2 tangent = MathUtils.Cross(vc.Normal, 1.0f);

                    float rtA = MathUtils.Cross(vcp.RA, tangent);
                    float rtB = MathUtils.Cross(vcp.RB, tangent);

                    float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB;

                    vcp.TangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f;

                    // Setup a velocity bias for restitution.
                    vcp.VelocityBias = 0.0f;
                    float vRel = System.Numerics.Vector2.Dot(vc.Normal,
                                                             vB + MathUtils.Cross(wB, vcp.RB) - vA - MathUtils.Cross(wA, vcp.RA));
                    if (vRel < -Settings.VelocityThreshold)
                    {
                        vcp.VelocityBias = -vc.Restitution * vRel;
                    }
                }

                // If we have two points, then prepare the block solver.
                if (vc.PointCount == 2)
                {
                    VelocityConstraintPoint vcp1 = vc.Points[0];
                    VelocityConstraintPoint vcp2 = vc.Points[1];

                    float rn1A = MathUtils.Cross(vcp1.RA, vc.Normal);
                    float rn1B = MathUtils.Cross(vcp1.RB, vc.Normal);
                    float rn2A = MathUtils.Cross(vcp2.RA, vc.Normal);
                    float rn2B = MathUtils.Cross(vcp2.RB, vc.Normal);

                    float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B;
                    float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B;
                    float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B;

                    // Ensure a reasonable condition number.
                    const float k_maxConditionNumber = 1000.0f;
                    if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
                    {
                        // K is safe to invert.
                        vc.K.Ex       = new System.Numerics.Vector2(k11, k12);
                        vc.K.Ey       = new System.Numerics.Vector2(k12, k22);
                        vc.NormalMass = vc.K.Inverse;
                    }
                    else
                    {
                        // The constraints are redundant, just use one.
                        // TODO_ERIN use deepest?
                        vc.PointCount = 1;
                    }
                }
            }
        }
Beispiel #8
0
 void onPostSolve(Contact contact, ContactVelocityConstraint impulse)
 {
     // ...
 }
Beispiel #9
0
        private void Report(ContactVelocityConstraint[] constraints)
        {
            if (_contactManager == null)
                return;

            for (int i = 0; i < ContactCount; ++i)
            {
                Contact c = _contacts[i];

                //FPE optimization: We don't store the impulses and send it to the delegate. We just send the whole contact.
                //FPE feature: added after collision
                if (c.FixtureA.AfterCollision != null)
                    c.FixtureA.AfterCollision(c.FixtureA, c.FixtureB, c, constraints[i]);

                if (c.FixtureB.AfterCollision != null)
                    c.FixtureB.AfterCollision(c.FixtureB, c.FixtureA, c, constraints[i]);

                if (_contactManager.PostSolve != null)
                {
                    _contactManager.PostSolve(c, constraints[i]);
                }
            }
        }
Beispiel #10
0
 protected virtual void PostSolve(Contact contact, ContactVelocityConstraint impulse)
 {
 }
        public void Reset(TimeStep step, int count, Contact[] contacts, Position[] positions, Velocity[] velocities, bool warmstarting = Settings.EnableWarmstarting)
        {
            _step = step;
            _count = count;
            _positions = positions;
            _velocities = velocities;
            _contacts = contacts;

            // grow the array
            if (_velocityConstraints == null || _velocityConstraints.Length < count)
            {
                _velocityConstraints = new ContactVelocityConstraint[count * 2];
                _positionConstraints = new ContactPositionConstraint[count * 2];

                for (int i = 0; i < _velocityConstraints.Length; i++)
                {
                    _velocityConstraints[i] = new ContactVelocityConstraint();
                }

                for (int i = 0; i < _positionConstraints.Length; i++)
                {
                    _positionConstraints[i] = new ContactPositionConstraint();
                }
            }

            // Initialize position independent portions of the constraints.
            for (int i = 0; i < _count; ++i)
            {
                Contact contact = contacts[i];

                Fixture fixtureA = contact.FixtureA;
                Fixture fixtureB = contact.FixtureB;
                Shape shapeA = fixtureA.Shape;
                Shape shapeB = fixtureB.Shape;
                float radiusA = shapeA.Radius;
                float radiusB = shapeB.Radius;
                Body bodyA = fixtureA.Body;
                Body bodyB = fixtureB.Body;
                Manifold manifold = contact.Manifold;

                int pointCount = manifold.PointCount;
                Debug.Assert(pointCount > 0);

                ContactVelocityConstraint vc = _velocityConstraints[i];
                vc.friction = contact.Friction;
                vc.restitution = contact.Restitution;
                vc.tangentSpeed = contact.TangentSpeed;
                vc.indexA = bodyA.IslandIndex;
                vc.indexB = bodyB.IslandIndex;
                vc.invMassA = bodyA._invMass;
                vc.invMassB = bodyB._invMass;
                vc.invIA = bodyA._invI;
                vc.invIB = bodyB._invI;
                vc.contactIndex = i;
                vc.pointCount = pointCount;
                vc.K.SetZero();
                vc.normalMass.SetZero();

                ContactPositionConstraint pc = _positionConstraints[i];
                pc.indexA = bodyA.IslandIndex;
                pc.indexB = bodyB.IslandIndex;
                pc.invMassA = bodyA._invMass;
                pc.invMassB = bodyB._invMass;
                pc.localCenterA = bodyA._sweep.LocalCenter;
                pc.localCenterB = bodyB._sweep.LocalCenter;
                pc.invIA = bodyA._invI;
                pc.invIB = bodyB._invI;
                pc.localNormal = manifold.LocalNormal;
                pc.localPoint = manifold.LocalPoint;
                pc.pointCount = pointCount;
                pc.radiusA = radiusA;
                pc.radiusB = radiusB;
                pc.type = manifold.Type;

                for (int j = 0; j < pointCount; ++j)
                {
                    ManifoldPoint cp = manifold.Points[j];
                    VelocityConstraintPoint vcp = vc.points[j];

                    if (Settings.EnableWarmstarting)
                    {
                        vcp.normalImpulse = _step.dtRatio * cp.NormalImpulse;
                        vcp.tangentImpulse = _step.dtRatio * cp.TangentImpulse;
                    }
                    else
                    {
                        vcp.normalImpulse = 0.0f;
                        vcp.tangentImpulse = 0.0f;
                    }

                    vcp.rA = Vector2.Zero;
                    vcp.rB = Vector2.Zero;
                    vcp.normalMass = 0.0f;
                    vcp.tangentMass = 0.0f;
                    vcp.velocityBias = 0.0f;

                    pc.localPoints[j] = cp.LocalPoint;
                }
            }
        }
Beispiel #12
0
        public void Reset(FSTimeStep step, int count, Contact[] contacts, Position[] positions, Velocity[] velocities)
        {
            _step       = step;
            _count      = count;
            _positions  = positions;
            _velocities = velocities;
            _contacts   = contacts;

            // grow the array
            if (_velocityConstraints == null || _velocityConstraints.Length < count)
            {
                _velocityConstraints = new ContactVelocityConstraint[count * 2];
                _positionConstraints = new ContactPositionConstraint[count * 2];

                for (int i = 0; i < _velocityConstraints.Length; i++)
                {
                    _velocityConstraints[i] = new ContactVelocityConstraint();
                }

                for (int i = 0; i < _positionConstraints.Length; i++)
                {
                    _positionConstraints[i] = new ContactPositionConstraint();
                }
            }

            // Initialize position independent portions of the constraints.
            for (int i = 0; i < _count; ++i)
            {
                Contact contact = contacts[i];

                FSFixture fixtureA = contact.FixtureA;
                FSFixture fixtureB = contact.FixtureB;
                Shape     shapeA   = fixtureA.Shape;
                Shape     shapeB   = fixtureB.Shape;
                float     radiusA  = shapeA.Radius;
                float     radiusB  = shapeB.Radius;
                FSBody    bodyA    = fixtureA.Body;
                FSBody    bodyB    = fixtureB.Body;
                Manifold  manifold = contact.Manifold;

                int pointCount = manifold.PointCount;
                Debug.Assert(pointCount > 0);

                ContactVelocityConstraint vc = _velocityConstraints[i];
                vc.friction     = contact.Friction;
                vc.restitution  = contact.Restitution;
                vc.tangentSpeed = contact.TangentSpeed;
                vc.indexA       = bodyA.IslandIndex;
                vc.indexB       = bodyB.IslandIndex;
                vc.invMassA     = bodyA.InvMass;
                vc.invMassB     = bodyB.InvMass;
                vc.invIA        = bodyA.InvI;
                vc.invIB        = bodyB.InvI;
                vc.contactIndex = i;
                vc.pointCount   = pointCount;
                vc.K.SetZero();
                vc.normalMass.SetZero();

                ContactPositionConstraint pc = _positionConstraints[i];
                pc.indexA       = bodyA.IslandIndex;
                pc.indexB       = bodyB.IslandIndex;
                pc.invMassA     = bodyA.InvMass;
                pc.invMassB     = bodyB.InvMass;
                pc.localCenterA = bodyA.Sweep.LocalCenter;
                pc.localCenterB = bodyB.Sweep.LocalCenter;
                pc.invIA        = bodyA.InvI;
                pc.invIB        = bodyB.InvI;
                pc.localNormal  = manifold.LocalNormal;
                pc.localPoint   = manifold.LocalPoint;
                pc.pointCount   = pointCount;
                pc.radiusA      = radiusA;
                pc.radiusB      = radiusB;
                pc.type         = manifold.Type;

                for (int j = 0; j < pointCount; ++j)
                {
                    ManifoldPoint           cp  = manifold.Points[j];
                    VelocityConstraintPoint vcp = vc.points[j];

                    if (FSSettings.EnableWarmstarting)
                    {
                        vcp.normalImpulse  = _step.dtRatio * cp.NormalImpulse;
                        vcp.tangentImpulse = _step.dtRatio * cp.TangentImpulse;
                    }
                    else
                    {
                        vcp.normalImpulse  = 0.0f;
                        vcp.tangentImpulse = 0.0f;
                    }

                    vcp.rA           = FVector2.Zero;
                    vcp.rB           = FVector2.Zero;
                    vcp.normalMass   = 0.0f;
                    vcp.tangentMass  = 0.0f;
                    vcp.velocityBias = 0.0f;

                    pc.localPoints[j] = cp.LocalPoint;
                }
            }
        }
Beispiel #13
0
        private void Report(ContactVelocityConstraint[] constraints)
        {
            if (_contactManager == null)
                return;

            for (int i = 0; i < ContactCount; ++i)
            {
                Contact c = _contacts[i];

                if (c.FixtureA.AfterCollision != null)
                    c.FixtureA.AfterCollision(c.FixtureA, c.FixtureB, c);

                if (c.FixtureB.AfterCollision != null)
                    c.FixtureB.AfterCollision(c.FixtureB, c.FixtureA, c);

                if (_contactManager.PostSolve != null)
                {
                    ContactVelocityConstraint cc = constraints[i];

                    _contactManager.PostSolve(c, cc);
                }
            }
        }
Beispiel #14
0
        internal void Reset(ref TimeStep step, int count, Contact[] contacts, SolverPosition[] positions, SolverVelocity[] velocities,
                            int[] locks, int velocityConstraintsMultithreadThreshold, int positionConstraintsMultithreadThreshold)
        {
            _count      = count;
            _positions  = positions;
            _velocities = velocities;
            _locks      = locks;
            _contacts   = contacts;
            _velocityConstraintsMultithreadThreshold = velocityConstraintsMultithreadThreshold;
            _positionConstraintsMultithreadThreshold = positionConstraintsMultithreadThreshold;

            // grow the array
            if (_velocityConstraints == null || _velocityConstraints.Length < count)
            {
                int newBufferCount = Math.Max(count, 32);
                newBufferCount = newBufferCount + (newBufferCount * 2 >> 4); // grow by x1.125f
                newBufferCount = (newBufferCount + 31) & (~31);              // grow in chunks of 32.
                int oldBufferCount = (_velocityConstraints == null) ? 0 : _velocityConstraints.Length;
                Array.Resize(ref _velocityConstraints, newBufferCount);
                Array.Resize(ref _positionConstraints, newBufferCount);

                for (int i = oldBufferCount; i < newBufferCount; i++)
                {
                    _velocityConstraints[i] = new ContactVelocityConstraint();
                    _positionConstraints[i] = new ContactPositionConstraint();
                }
            }

            // Initialize position independent portions of the constraints.
            for (int i = 0; i < _count; ++i)
            {
                Contact contact = contacts[i];

                Fixture  fixtureA = contact.FixtureA;
                Fixture  fixtureB = contact.FixtureB;
                Shape    shapeA   = fixtureA.Shape;
                Shape    shapeB   = fixtureB.Shape;
                float    radiusA  = shapeA.Radius;
                float    radiusB  = shapeB.Radius;
                Body     bodyA    = fixtureA.Body;
                Body     bodyB    = fixtureB.Body;
                Manifold manifold = contact.Manifold;

                int pointCount = manifold.PointCount;
                Debug.Assert(pointCount > 0);

                ContactVelocityConstraint vc = _velocityConstraints[i];
                vc.friction     = contact.Friction;
                vc.restitution  = contact.Restitution;
                vc.tangentSpeed = contact.TangentSpeed;
                vc.indexA       = bodyA.IslandIndex;
                vc.indexB       = bodyB.IslandIndex;
                vc.invMassA     = bodyA._invMass;
                vc.invMassB     = bodyB._invMass;
                vc.invIA        = bodyA._invI;
                vc.invIB        = bodyB._invI;
                vc.contactIndex = i;
                vc.pointCount   = pointCount;
                vc.K.SetZero();
                vc.normalMass.SetZero();

                ContactPositionConstraint pc = _positionConstraints[i];
                pc.indexA       = bodyA.IslandIndex;
                pc.indexB       = bodyB.IslandIndex;
                pc.invMassA     = bodyA._invMass;
                pc.invMassB     = bodyB._invMass;
                pc.localCenterA = bodyA._sweep.LocalCenter;
                pc.localCenterB = bodyB._sweep.LocalCenter;
                pc.invIA        = bodyA._invI;
                pc.invIB        = bodyB._invI;
                pc.localNormal  = manifold.LocalNormal;
                pc.localPoint   = manifold.LocalPoint;
                pc.pointCount   = pointCount;
                pc.radiusA      = radiusA;
                pc.radiusB      = radiusB;
                pc.type         = manifold.Type;

                for (int j = 0; j < pointCount; ++j)
                {
                    ManifoldPoint           cp  = manifold.Points[j];
                    VelocityConstraintPoint vcp = vc.points[j];

                    if (step.warmStarting)
                    {
                        vcp.normalImpulse  = step.dtRatio * cp.NormalImpulse;
                        vcp.tangentImpulse = step.dtRatio * cp.TangentImpulse;
                    }
                    else
                    {
                        vcp.normalImpulse  = 0.0f;
                        vcp.tangentImpulse = 0.0f;
                    }

                    vcp.rA           = Vector2.Zero;
                    vcp.rB           = Vector2.Zero;
                    vcp.normalMass   = 0.0f;
                    vcp.tangentMass  = 0.0f;
                    vcp.velocityBias = 0.0f;

                    pc.localPoints[j] = cp.LocalPoint;
                }
            }
        }
        private void HandleAfterCollision(Fixture fixtureA, Fixture fixtureB, Contact contact, ContactVelocityConstraint impulse)
        {
            _physicsCollisionArgs.FixtureA = fixtureA;
            _physicsCollisionArgs.FixtureB = fixtureB;
            _physicsCollisionArgs.Contact = contact;
            _physicsCollisionArgs.Impulse = impulse;
            _physicsCollisionArgs.IgnoreCollision = false;

            EntityWorld.FireEvent(this, EventId.AfterCollision, _physicsCollisionArgs);
            _physicsCollisionArgs.EntityA?.FireEvent(this, EventId.AfterCollision, _physicsCollisionArgs);
            _physicsCollisionArgs.EntityB?.FireEvent(this, EventId.AfterCollision, _physicsCollisionArgs);
        }
Beispiel #16
0
        protected override void PostSolve(Contact contact, ContactVelocityConstraint impulse)
        {
            if (_broke)
            {
                // The body already broke.
                return;
            }

            // Should the body break?
            float maxImpulse = 0.0f;
            Manifold manifold = contact.Manifold;

            for (int i = 0; i < manifold.PointCount; ++i)
            {
                maxImpulse = Math.Max(maxImpulse, impulse.points[i].normalImpulse);
            }

            if (maxImpulse > 40.0f)
            {
                // Flag the body for breaking.
                _break = true;
            }
        }