Used to warm start ComputeDistance. Set count to zero on first call.
Beispiel #1
0
 internal void WriteCache(ref SimplexCache cache)
 {
     cache.Metric = GetMetric();
     cache.Count  = (ushort)this.Count;
     for (int i = 0; i < this.Count; ++i)
     {
         cache.IndexA[i] = (byte)(this.V[i].IndexA);
         cache.IndexB[i] = (byte)(this.V[i].IndexB);
     }
 }
Beispiel #2
0
        public static void Set(ref SimplexCache cache,
                               DistanceProxy proxyA, ref Sweep sweepA,
                               DistanceProxy proxyB, ref Sweep sweepB,
                               float t1)
        {
            _localPoint = Vector2.Zero;
            _proxyA = proxyA;
            _proxyB = proxyB;
            int count = cache.Count;
            Debug.Assert(0 < count && count < 3);

            _sweepA = sweepA;
            _sweepB = sweepB;

            Transform xfA, xfB;
            _sweepA.GetTransform(out xfA, t1);
            _sweepB.GetTransform(out xfB, t1);

            if (count == 1)
            {
                _type = SeparationFunctionType.Points;
                Vector2 localPointA = _proxyA.Vertices[cache.IndexA[0]];
                Vector2 localPointB = _proxyB.Vertices[cache.IndexB[0]];
                Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);
                Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);
                _axis = pointB - pointA;
                _axis.Normalize();
                return;
            }
            else if (cache.IndexA[0] == cache.IndexA[1])
            {
                // Two points on B and one on A.
                _type = SeparationFunctionType.FaceB;
                Vector2 localPointB1 = proxyB.Vertices[cache.IndexB[0]];
                Vector2 localPointB2 = proxyB.Vertices[cache.IndexB[1]];

                Vector2 a = localPointB2 - localPointB1;
                _axis = new Vector2(a.Y, -a.X);
                _axis.Normalize();
                Vector2 normal = MathUtils.Multiply(ref xfB.R, _axis);

                _localPoint = 0.5f * (localPointB1 + localPointB2);
                Vector2 pointB = MathUtils.Multiply(ref xfB, _localPoint);

                Vector2 localPointA = proxyA.Vertices[cache.IndexA[0]];
                Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);

                float s = Vector2.Dot(pointA - pointB, normal);
                if (s < 0.0f)
                {
                    _axis = -_axis;
                    s = -s;
                }
                return;
            }
            else
            {
                // Two points on A and one or two points on B.
                _type = SeparationFunctionType.FaceA;
                Vector2 localPointA1 = _proxyA.Vertices[cache.IndexA[0]];
                Vector2 localPointA2 = _proxyA.Vertices[cache.IndexA[1]];

                Vector2 a = localPointA2 - localPointA1;
                _axis = new Vector2(a.Y, -a.X);
                _axis.Normalize();
                Vector2 normal = MathUtils.Multiply(ref xfA.R, _axis);

                _localPoint = 0.5f * (localPointA1 + localPointA2);
                Vector2 pointA = MathUtils.Multiply(ref xfA, _localPoint);

                Vector2 localPointB = _proxyB.Vertices[cache.IndexB[0]];
                Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);

                float s = Vector2.Dot(pointB - pointA, normal);
                if (s < 0.0f)
                {
                    _axis = -_axis;
                    s = -s;
                }
                return;
            }
        }
Beispiel #3
0
        public static void ComputeDistance(out DistanceOutput output,
                                           out SimplexCache cache,
                                           DistanceInput input)
        {
            cache = new SimplexCache();
            ++GJKCalls;

            // Initialize the simplex.
            Simplex simplex = new Simplex();
            simplex.ReadCache(ref cache, input.ProxyA, ref input.TransformA, input.ProxyB, ref input.TransformB);

            // Get simplex vertices as an array.
            const int k_maxIters = 20;

            // These store the vertices of the last simplex so that we
            // can check for duplicates and prevent cycling.
            FixedArray3<int> saveA = new FixedArray3<int>();
            FixedArray3<int> saveB = new FixedArray3<int>();

            Vector2 closestPoint = simplex.GetClosestPoint();
            float distanceSqr1 = closestPoint.LengthSquared();
            float distanceSqr2 = distanceSqr1;

            // Main iteration loop.
            int iter = 0;
            while (iter < k_maxIters)
            {
                // Copy simplex so we can identify duplicates.
                int saveCount = simplex.Count;
                for (int i = 0; i < saveCount; ++i)
                {
                    saveA[i] = simplex.V[i].IndexA;
                    saveB[i] = simplex.V[i].IndexB;
                }

                switch (simplex.Count)
                {
                    case 1:
                        break;

                    case 2:
                        simplex.Solve2();
                        break;

                    case 3:
                        simplex.Solve3();
                        break;

                    default:
                        Debug.Assert(false);
                        break;
                }

                // If we have 3 points, then the origin is in the corresponding triangle.
                if (simplex.Count == 3)
                {
                    break;
                }

                // Compute closest point.
                Vector2 p = simplex.GetClosestPoint();
                distanceSqr2 = p.LengthSquared();

                // Ensure progress
                if (distanceSqr2 >= distanceSqr1)
                {
                    //break;
                }
                distanceSqr1 = distanceSqr2;

                // Get search direction.
                Vector2 d = simplex.GetSearchDirection();

                // Ensure the search direction is numerically fit.
                if (d.LengthSquared() < Settings.Epsilon * Settings.Epsilon)
                {
                    // The origin is probably contained by a line segment
                    // or triangle. Thus the shapes are overlapped.

                    // We can't return zero here even though there may be overlap.
                    // In case the simplex is a point, segment, or triangle it is difficult
                    // to determine if the origin is contained in the CSO or very close to it.
                    break;
                }

                // Compute a tentative new simplex vertex using support points.
                SimplexVertex vertex = simplex.V[simplex.Count];
                vertex.IndexA = input.ProxyA.GetSupport(MathUtils.MultiplyT(ref input.TransformA.R, -d));
                vertex.WA = MathUtils.Multiply(ref input.TransformA, input.ProxyA.Vertices[vertex.IndexA]);

                vertex.IndexB = input.ProxyB.GetSupport(MathUtils.MultiplyT(ref input.TransformB.R, d));
                vertex.WB = MathUtils.Multiply(ref input.TransformB, input.ProxyB.Vertices[vertex.IndexB]);
                vertex.W = vertex.WB - vertex.WA;
                simplex.V[simplex.Count] = vertex;

                // Iteration count is equated to the number of support point calls.
                ++iter;
                ++GJKIters;

                // Check for duplicate support points. This is the main termination criteria.
                bool duplicate = false;
                for (int i = 0; i < saveCount; ++i)
                {
                    if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i])
                    {
                        duplicate = true;
                        break;
                    }
                }

                // If we found a duplicate support point we must exit to avoid cycling.
                if (duplicate)
                {
                    break;
                }

                // New vertex is ok and needed.
                ++simplex.Count;
            }

            GJKMaxIters = Math.Max(GJKMaxIters, iter);

            // Prepare output.
            simplex.GetWitnessPoints(out output.PointA, out output.PointB);
            output.Distance = (output.PointA - output.PointB).Length();
            output.Iterations = iter;

            // Cache the simplex.
            simplex.WriteCache(ref cache);

            // Apply radii if requested.
            if (input.UseRadii)
            {
                float rA = input.ProxyA.Radius;
                float rB = input.ProxyB.Radius;

                if (output.Distance > rA + rB && output.Distance > Settings.Epsilon)
                {
                    // Shapes are still no overlapped.
                    // Move the witness points to the outer surface.
                    output.Distance -= rA + rB;
                    Vector2 normal = output.PointB - output.PointA;
                    normal.Normalize();
                    output.PointA += rA * normal;
                    output.PointB -= rB * normal;
                }
                else
                {
                    // Shapes are overlapped when radii are considered.
                    // Move the witness points to the middle.
                    Vector2 p = 0.5f * (output.PointA + output.PointB);
                    output.PointA = p;
                    output.PointB = p;
                    output.Distance = 0.0f;
                }
            }
        }
Beispiel #4
0
 internal void WriteCache(ref SimplexCache cache)
 {
     cache.Metric = GetMetric();
     cache.Count = (UInt16)Count;
     for (int i = 0; i < Count; ++i)
     {
         cache.IndexA[i] = (byte)(V[i].IndexA);
         cache.IndexB[i] = (byte)(V[i].IndexB);
     }
 }
Beispiel #5
0
        internal void ReadCache(ref SimplexCache cache,
                                DistanceProxy proxyA, ref Transform transformA,
                                DistanceProxy proxyB, ref Transform transformB)
        {
            Debug.Assert(cache.Count <= 3);

            // Copy data from cache.
            Count = cache.Count;
            for (int i = 0; i < Count; ++i)
            {
                SimplexVertex v = V[i];
                v.IndexA = cache.IndexA[i];
                v.IndexB = cache.IndexB[i];
                Vector2 wALocal = proxyA.Vertices[v.IndexA];
                Vector2 wBLocal = proxyB.Vertices[v.IndexB];
                v.WA = MathUtils.Multiply(ref transformA, wALocal);
                v.WB = MathUtils.Multiply(ref transformB, wBLocal);
                v.W = v.WB - v.WA;
                v.A = 0.0f;
                V[i] = v;
            }

            // Compute the new simplex metric, if it is substantially different than
            // old metric then flush the simplex.
            if (Count > 1)
            {
                float metric1 = cache.Metric;
                float metric2 = GetMetric();
                if (metric2 < 0.5f * metric1 || 2.0f * metric1 < metric2 || metric2 < Settings.Epsilon)
                {
                    // Reset the simplex.
                    Count = 0;
                }
            }

            // If the cache is empty or invalid ...
            if (Count == 0)
            {
                SimplexVertex v = V[0];
                v.IndexA = 0;
                v.IndexB = 0;
                Vector2 wALocal = proxyA.Vertices[0];
                Vector2 wBLocal = proxyB.Vertices[0];
                v.WA = MathUtils.Multiply(ref transformA, wALocal);
                v.WB = MathUtils.Multiply(ref transformB, wBLocal);
                v.W = v.WB - v.WA;
                V[0] = v;
                Count = 1;
            }
        }
Beispiel #6
0
        public static void Set(ref SimplexCache cache, DistanceProxy proxyA, ref Sweep sweepA, DistanceProxy proxyB, ref Sweep sweepB, float t1)
        {
            _localPoint = Vector2.Zero;
            _proxyA     = proxyA;
            _proxyB     = proxyB;
            int count = cache.Count;

            Debug.Assert(0 < count && count < 3);

            _sweepA = sweepA;
            _sweepB = sweepB;

            Transform xfA, xfB;

            _sweepA.GetTransform(out xfA, t1);
            _sweepB.GetTransform(out xfB, t1);

            if (count == 1)
            {
                _type = SeparationFunctionType.Points;
                Vector2 localPointA = _proxyA.Vertices[cache.IndexA[0]];
                Vector2 localPointB = _proxyB.Vertices[cache.IndexB[0]];
                Vector2 pointA      = MathUtils.Mul(ref xfA, localPointA);
                Vector2 pointB      = MathUtils.Mul(ref xfB, localPointB);
                _axis = pointB - pointA;
                _axis.Normalize();
            }
            else if (cache.IndexA[0] == cache.IndexA[1])
            {
                // Two points on B and one on A.
                _type = SeparationFunctionType.FaceB;
                Vector2 localPointB1 = proxyB.Vertices[cache.IndexB[0]];
                Vector2 localPointB2 = proxyB.Vertices[cache.IndexB[1]];

                Vector2 a = localPointB2 - localPointB1;
                _axis = new Vector2(a.Y, -a.X);
                _axis.Normalize();
                Vector2 normal = MathUtils.Mul(ref xfB.q, _axis);

                _localPoint = 0.5f * (localPointB1 + localPointB2);
                Vector2 pointB = MathUtils.Mul(ref xfB, _localPoint);

                Vector2 localPointA = proxyA.Vertices[cache.IndexA[0]];
                Vector2 pointA      = MathUtils.Mul(ref xfA, localPointA);

                float s = Vector2.Dot(pointA - pointB, normal);
                if (s < 0.0f)
                {
                    _axis = -_axis;
                }
            }
            else
            {
                // Two points on A and one or two points on B.
                _type = SeparationFunctionType.FaceA;
                Vector2 localPointA1 = _proxyA.Vertices[cache.IndexA[0]];
                Vector2 localPointA2 = _proxyA.Vertices[cache.IndexA[1]];

                Vector2 a = localPointA2 - localPointA1;
                _axis = new Vector2(a.Y, -a.X);
                _axis.Normalize();
                Vector2 normal = MathUtils.Mul(ref xfA.q, _axis);

                _localPoint = 0.5f * (localPointA1 + localPointA2);
                Vector2 pointA = MathUtils.Mul(ref xfA, _localPoint);

                Vector2 localPointB = _proxyB.Vertices[cache.IndexB[0]];
                Vector2 pointB      = MathUtils.Mul(ref xfB, localPointB);

                float s = Vector2.Dot(pointB - pointA, normal);
                if (s < 0.0f)
                {
                    _axis = -_axis;
                }
            }

            //FPE note: the returned value that used to be here has been removed, as it was not used.
        }