Beispiel #1
0
        /// <summary>
        ///     Decomposes a non-convex polygon into a number of convex polygons, up to maxPolygons (remaining pieces are thrown
        ///     out). Each resulting polygon will have no more than Settings.MaxPolygonVertices vertices.
        ///     <para/>
        ///     Warning: Only works on simple polygons
        /// </summary>
        /// <param name="vertices">The vertices.</param>
        /// <param name="maxPolygons">The maximum number of polygons.</param>
        /// <param name="tolerance">The tolerance.</param>
        /// <returns></returns>
        public static List <List <Vector2> > ConvexPartition(
            List <Vector2> vertices, int maxPolygons = int.MaxValue, float tolerance = 0)
        {
            if (vertices.Count < 3)
            {
                return(new List <List <Vector2> > {
                    vertices
                });
            }

            List <Triangle> triangulated;

            if (IsCounterClockWise(vertices))
            {
                var tempP = new List <Vector2>(vertices);
                tempP.Reverse();
                triangulated = TriangulatePolygon(tempP);
            }
            else
            {
                triangulated = TriangulatePolygon(vertices);
            }
            if (triangulated.Count < 1)
            {
                // Still no luck? Oh well...
                throw new Exception("Can't triangulate your polygon.");
            }

            var polygonizedTriangles = PolygonizeTriangles(triangulated, maxPolygons, tolerance);

            //The polygonized triangles are not guaranteed to be without collinear points. We remove
            //them to be sure.
            for (var i = 0; i < polygonizedTriangles.Count; i++)
            {
                polygonizedTriangles[i] = Simplification.CollinearSimplify(polygonizedTriangles[i], 0);
            }

            // Remove empty vertex collections.
            for (var i = polygonizedTriangles.Count - 1; i >= 0; i--)
            {
                if (polygonizedTriangles[i].Count == 0)
                {
                    polygonizedTriangles.RemoveAt(i);
                }
            }

            return(polygonizedTriangles);
        }
Beispiel #2
0
        /// <summary>Actual algorithm.</summary>
        /// <param name="subject">The subject polygon.</param>
        /// <param name="clip">The clip polygon, which is added, subtracted or intersected with the subject</param>
        /// <param name="clipType">The operation to be performed. Either Union, Difference or Intersection.</param>
        /// <param name="error">The error generated (if any)</param>
        /// <returns>
        ///     A list of closed polygons, which make up the result of the clipping operation. Outer contours are ordered
        ///     counter clockwise, holes are ordered clockwise.
        /// </returns>
        private static List <List <Vector2> > Execute(
            IList <Vector2> subject, IList <Vector2> clip, PolyClipType clipType, out PolyClipError error)
        {
            if (!IsSimple(subject))
            {
                throw new ArgumentException(
                          "Input subject polygon must be simple (cannot intersect themselves).", "subject");
            }
            if (!IsSimple(clip))
            {
                throw new ArgumentException("Input clip polygon must be simple (cannot intersect themselves).", "clip");
            }

            // Copy polygons.
            List <Vector2> slicedSubject;
            List <Vector2> slicedClip;

            // Calculate the intersection and touch points between subject and clip and add them to both.
            CalculateIntersections(subject, clip, out slicedSubject, out slicedClip);

            // Translate polygons into upper right quadrant as the algorithm depends on it.
            var     lbSubject = GetLowerBound(subject);
            var     lbClip    = GetLowerBound(clip);
            Vector2 translate;

            Vector2.Min(ref lbSubject, ref lbClip, out translate);
            translate = Vector2.One - translate;
            if (translate != Vector2.Zero)
            {
                for (int i = 0, count = slicedSubject.Count; i < count; ++i)
                {
                    slicedSubject[i] += translate;
                }
                for (int i = 0, count = slicedClip.Count; i < count; ++i)
                {
                    slicedClip[i] += translate;
                }
            }

            // Enforce counterclockwise contours.
            ForceCounterClockWise(slicedSubject);
            ForceCounterClockWise(slicedClip);

            // Build simplical chains from the polygons and calculate the the corresponding coefficients.
            List <Edge>  subjectSimplices;
            List <float> subjectCoefficient;
            List <Edge>  clipSimplices;
            List <float> clipCoefficient;

            CalculateSimplicalChain(slicedSubject, out subjectCoefficient, out subjectSimplices);
            CalculateSimplicalChain(slicedClip, out clipCoefficient, out clipSimplices);

            // Determine the characteristics function for all non-original edges
            // in subject and clip simplical chain and combine the edges contributing
            // to the result, depending on the clipType
            var resultSimplices = CalculateResultChain(
                subjectCoefficient,
                subjectSimplices,
                clipCoefficient,
                clipSimplices,
                clipType);

            // Convert result chain back to polygon(s).
            List <List <Vector2> > result;

            error = BuildPolygonsFromChain(resultSimplices, out result);

            // Reverse the polygon translation from the beginning
            // and remove collinear points from output
            translate *= -1.0f;
            foreach (var vertices in result)
            {
                for (int i = 0, count = vertices.Count; i < count; ++i)
                {
                    vertices[i] += translate;
                }
                Simplification.CollinearSimplify(vertices);
            }
            return(result);
        }
Beispiel #3
0
        /// <summary>
        ///     Turns a list of triangles into a list of convex polygons. Very simple method - start with a seed triangle, keep
        ///     adding triangles to it until you can't add any more without making the polygon non-convex.
        ///     <para/>
        ///     Returns an integer telling how many polygons were created.  Will fill polygons array up to maxPolygons entries,
        ///     which may be smaller or larger than the return value.
        ///     <para/>
        ///     Takes O(N///P) where P is the number of resultant polygons, N is triangle count.
        ///     <para/>
        ///     The final polygon list will not necessarily be minimal, though in practice it works fairly well.
        /// </summary>
        /// <param name="triangulated">The triangulated.</param>
        /// <param name="maxPolygons">The maximum number of polygons</param>
        /// <param name="tolerance">The tolerance</param>
        /// <returns></returns>
        private static List <List <Vector2> > PolygonizeTriangles(
            IList <Triangle> triangulated, int maxPolygons, float tolerance)
        {
            var polygons = new List <List <Vector2> >(50);

            var polyIndex = 0;

            if (triangulated.Count <= 0)
            {
                // Return empty polygon list.
                return(polygons);
            }

            var covered = new bool[triangulated.Count];

            for (var i = 0; i < triangulated.Count; ++i)
            {
                covered[i] = false;

                //Check here for degenerate triangles
// ReSharper disable CompareOfFloatsByEqualityOperator
                if (((triangulated[i].X[0] == triangulated[i].X[1]) && (triangulated[i].Y[0] == triangulated[i].Y[1]))
                    ||
                    ((triangulated[i].X[1] == triangulated[i].X[2]) && (triangulated[i].Y[1] == triangulated[i].Y[2]))
                    ||
                    ((triangulated[i].X[0] == triangulated[i].X[2]) && (triangulated[i].Y[0] == triangulated[i].Y[2])))
// ReSharper restore CompareOfFloatsByEqualityOperator
                {
                    covered[i] = true;
                }
            }

            var notDone = true;

            while (notDone)
            {
                var current = -1;
                for (var i = 0; i < triangulated.Count; ++i)
                {
                    if (covered[i])
                    {
                        continue;
                    }
                    current = i;
                    break;
                }
                if (current == -1)
                {
                    notDone = false;
                }
                else
                {
                    var poly = new List <Vector2>(3);

                    for (var i = 0; i < 3; i++)
                    {
                        poly.Add(new Vector2(triangulated[current].X[i], triangulated[current].Y[i]));
                    }

                    covered[current] = true;
                    var index = 0;
                    for (var i = 0; i < 2 * triangulated.Count; ++i, ++index)
                    {
                        while (index >= triangulated.Count)
                        {
                            index -= triangulated.Count;
                        }
                        if (covered[index])
                        {
                            continue;
                        }
                        var newPolygon = AddTriangle(triangulated[index], poly);
                        if (newPolygon == null)
                        {
                            continue;
                        }

                        if (newPolygon.Count > 8)
                        {
                            continue;
                        }

                        if (IsConvex(newPolygon))
                        {
                            poly           = new List <Vector2>(newPolygon);
                            covered[index] = true;
                        }
                    }

                    // We have a maximum of polygons that we need to keep under.
                    if (polyIndex < maxPolygons)
                    {
                        Simplification.MergeParallelEdges(poly, tolerance);

                        // If identical points are present, a triangle gets
                        // borked by the MergeParallelEdges function, hence
                        // the vertex number check.
                        if (poly.Count >= 3)
                        {
                            polygons.Add(new List <Vector2>(poly));
                        }
                    }

                    if (poly.Count >= 3)
                    {
                        polyIndex++;
                    }
                }
            }

            return(polygons);
        }