DumpWeights() public method

public DumpWeights ( ) : String
return String
        /// <summary>
        /// This is based off of this article:
        /// http://www.codeproject.com/Articles/54575/An-Introduction-to-Encog-Neural-Networks-for-C
        /// </summary>
        /// <remarks>
        /// Go here for documentation of encog:
        /// http://www.heatonresearch.com/wiki
        /// 
        /// Download link:
        /// https://github.com/encog/encog-dotnet-core/releases
        /// </remarks>
        private void btnXOR_Click(object sender, RoutedEventArgs e)
        {
            try
            {
                _trainingData = null;
                _results = null;

                BasicNetwork network = new BasicNetwork();

                #region Create nodes

                // Create the network's nodes

                //NOTE: Using ActivationSigmoid, because there are no negative values.  If there were negative, use ActivationTANH
                //http://www.heatonresearch.com/wiki/Activation_Function

                //NOTE: ActivationSigmoid (0 to 1) and ActivationTANH (-1 to 1) are pure but slower.  A cruder but faster function is ActivationElliott (0 to 1) and ActivationElliottSymmetric (-1 to 1)
                //http://www.heatonresearch.com/wiki/Elliott_Activation_Function

                network.AddLayer(new BasicLayer(new ActivationSigmoid(), true, 2));     // input layer
                network.AddLayer(new BasicLayer(new ActivationSigmoid(), true, 6));     // hidden layer
                network.AddLayer(new BasicLayer(new ActivationSigmoid(), true, 1));     // output layer
                network.Structure.FinalizeStructure();

                // Randomize the links
                network.Reset();

                #endregion

                #region Training data

                // Neural networks must be trained before they are of any use. To train this neural network, we must provide training
                // data. The training data is the truth table for the XOR operator. The XOR has the following inputs:
                double[][] xor_input = new[]
                {
                    new[] { 0d, 0d },
                    new[] { 1d, 0d },
                    new[] { 0d, 1d },
                    new[] { 1d, 1d },
                };

                // And the expected outputs
                double[][] xor_ideal_output = new[]
                {
                    new[] { 0d },
                    new[] { 1d },
                    new[] { 1d },
                    new[] { 0d },
                };

                _trainingData = GetDrawDataFromTrainingData(xor_input, xor_ideal_output);

                #endregion
                #region Train network

                INeuralDataSet trainingSet = new BasicNeuralDataSet(xor_input, xor_ideal_output);

                // This is a good general purpose training algorithm
                //http://www.heatonresearch.com/wiki/Training
                ITrain train = new ResilientPropagation(network, trainingSet);

                List<double> log = new List<double>();

                int trainingIteration = 1;
                do
                {
                    train.Iteration();

                    log.Add(train.Error);

                    trainingIteration++;
                } while ((trainingIteration < 2000) && (train.Error > 0.001));

                // Paste this into excel and chart it to see the error trend
                string logExcel = string.Join("\r\n", log);

                #endregion

                #region Test

                //NOTE: I initially ran a bunch of tests, but the network always returns exactly the same result when given the same inputs
                //var test = Enumerable.Range(0, 1000).
                //    Select(o => new { In1 = _rand.Next(2), In2 = _rand.Next(2) }).

                var test = xor_input.
                    Select(o => new { In1 = Convert.ToInt32(o[0]), In2 = Convert.ToInt32(o[1]) }).
                    Select(o => new
                    {
                        o.In1,
                        o.In2,
                        Expected = XOR(o.In1, o.In2),
                        NN = CallNN(network, o.In1, o.In2),
                    }).
                    Select(o => new { o.In1, o.In2, o.Expected, o.NN, Error = Math.Abs(o.Expected - o.NN) }).
                    OrderByDescending(o => o.Error).
                    ToArray();

                #endregion
                #region Test intermediate values

                // It was only trained with inputs of 0 and 1.  Let's see what it does with values in between

                var intermediates = Enumerable.Range(0, 1000).
                    Select(o => new { In1 = _rand.NextDouble(), In2 = _rand.NextDouble() }).
                    Select(o => new
                    {
                        o.In1,
                        o.In2,
                        NN = CallNN(network, o.In1, o.In2),
                    }).
                    OrderBy(o => o.In1).
                    ThenBy(o => o.In2).
                    //OrderBy(o => o.NN).
                    ToArray();

                #endregion

                #region Serialize/Deserialize

                // Serialize it
                string weightDump = network.DumpWeights();
                double[] dumpArray = weightDump.Split(',').
                    Select(o => double.Parse(o)).
                    ToArray();

                //TODO: Shoot through the layers, and store in some custom structure that can be serialized, then walked through to rebuild on deserialize
                //string[] layerDump = network.Structure.Layers.
                //    Select(o => o.ToString()).
                //    ToArray();

                // Create a clone
                BasicNetwork clone = new BasicNetwork();

                clone.AddLayer(new BasicLayer(new ActivationSigmoid(), true, 2));
                clone.AddLayer(new BasicLayer(new ActivationSigmoid(), true, 6));
                clone.AddLayer(new BasicLayer(new ActivationSigmoid(), true, 1));
                clone.Structure.FinalizeStructure();

                clone.DecodeFromArray(dumpArray);

                // Test the clone
                string cloneDump = clone.DumpWeights();

                bool isSame = weightDump == cloneDump;

                var cloneTests = xor_input.
                    Select(o => new
                    {
                        Input = o,
                        NN = CallNN(clone, o[0], o[1]),
                    }).ToArray();

                #endregion

                #region Store results

                double[] matchValues = new[] { 0d, 1d };
                double matchRange = .03;        //+- 5% of target value would be considered a match

                _results = intermediates.
                    Select(o => Tuple.Create(new Point(o.In1, o.In2), o.NN, IsMatch(o.NN, matchValues, matchRange))).
                    ToArray();

                #endregion
            }
            catch (Exception ex)
            {
                MessageBox.Show(ex.ToString(), this.Title, MessageBoxButton.OK, MessageBoxImage.Error);
            }
            finally
            {
                RedrawResults();
            }
        }