Beispiel #1
0
		public override void CalculateForceField(ParticleEnsemble ensemble)
		{
			// variable declarations
			double posXi, posYi;
			double posXj, posYj;
			double ijSeparation = 0.0, LJforce = 0.0, PotentialEnergy = 0.0;
  
			// variable initializations
			int BoxHeight = ensemble.BoxHeight;
			int BoxWidth = ensemble.BoxWidth;
			double MaxForce = ensemble.MaxForceThreshold;
			double MinForce = -1.0 * (ensemble.MaxForceThreshold);

			DPVector zero = new DPVector(0, 0);

			// initialize vectors holding forces
			for (int i = 0; i < ensemble.NumberOfParticles; ++i)
			{
				LJforces[i] = zero;				
			}

			ensemble.ResetAllParticlesNotWithinRange(); 

			for (int i = 0; i < ensemble.NumberOfParticles; ++i)
			{
				Particle particlei = ensemble.GetParticle(i); 

				for (int j = (i + 1); j < ensemble.NumberOfParticles; ++j)
				{				
					Particle particlej = ensemble.GetParticle(j); 

					// get the interparticle separation distances
					ijSeparation = ensemble.GetInterParticleSeparation(i, j);

					double LJgradientTermA = particlei.ParticleType.LJgradientTermA[particlej.TypeID];
					double LJgradientTermB = particlei.ParticleType.LJgradientTermB[particlej.TypeID]; 
						
					// update the radial distribution function
					double cutoffDistance = particlei.ParticleType.MinimumDistance[particlej.TypeID]; // MinimumDistance[i, j];
			
					if (ijSeparation < cutoffDistance) 
					{						
						// for each particle, change the appropriate element of the setWithinRangeOfAnotherParticle vector to true
						posXi = particlei.Position.X; 
						posYi = particlei.Position.Y; 

						posXj = particlej.Position.X; 
						posYj = particlej.Position.Y; 
												
						LJforce = (posXj - posXi) * (LJgradientTermA / Math.Pow(ijSeparation, 13.0) + LJgradientTermB / Math.Pow(ijSeparation, 7.0)) / ijSeparation;

						if (Math.Abs(LJforce) > MaxForce || Math.Abs(LJforce) < MinForce)
						{
							// error check for real-time stability...
							LJforce = 0.0; 
						}    
						else if(double.IsNaN(LJforce) || double.IsInfinity(LJforce))
						{
							// error check for real-time stability...
							LJforce = 0.0;
						}

						LJforces[i].X += LJforce;
						LJforces[j].X += -1.0 * LJforce;
						LJforce = (posYj - posYi) * (LJgradientTermA / Math.Pow(ijSeparation, 13.0) + LJgradientTermB / Math.Pow(ijSeparation, 7.0)) / ijSeparation;

						if (Math.Abs(LJforce) > MaxForce || Math.Abs(LJforce) < MinForce) 
						{
							// error check for real-time stability...
							LJforce = 0.0; 
						}    
						else if (double.IsNaN(LJforce) || double.IsInfinity(LJforce)) 
						{
							// error check for real-time stability...
							LJforce = 0.0; 
						} 

						LJforces[i].Y += LJforce;
						LJforces[j].Y += -1.0 * LJforce;

						ensemble.SetParticlesWithinRange(i, j);
						ensemble.SetParticlesWithinRange(j, i);					
					}
					//else
					//{
					//	ensemble.SetParticlesNotWithinRange(i, j);
						//ensemble.SetParticlesNotWithinRange(j, i);			
					//}
				}        
			}
	
			// set the forces in the Particle Ensemble Object
			ensemble.AddForces(LJforces);

			// set the potential energy
			ensemble.AddPotentialEnergy(PotentialEnergy);
		}
Beispiel #2
0
		/// <summary>
		/// function to calculate Soft Spheres forcefield
		/// </summary>
		/// <param name="ensemble"></param>
		public override void CalculateForceField(ParticleEnsemble ensemble)
		{
			//  variable declarations    
			int i;
			double posXi, posYi, radius;
			double PotentialEnergy = 0.0;

			// variable initializations  
			int BoxHeight = ensemble.BoxHeight;
			int BoxWidth = ensemble.BoxWidth;

			DPVector zero = new DPVector(0, 0); 

			// #pragma omp parallel for
			for (i = 0; i < ensemble.NumberOfParticles; ++i)
			{
				// initialize vectors holding forces
				forces[i] = zero;																							
			}

			//#pragma omp parallel for
			for (i = 0; i < ensemble.NumberOfParticles; ++i)
			{
				Particle particlei = ensemble.GetParticle(i);

				posXi = particlei.Position.X; 
				posYi = particlei.Position.Y; 
				radius = particlei.Radius; 

				// get pixel vectors along the particle's X & Y axes for getting gradient of image field
				// there are 2 steps to this process: 
				//  (1) do some gaussian smoothing with a user defined width parameter (this determines how
				//      many pixels we need
				//  (2) determine the gradient from linear regression of the 3 surrounding points...
				//    cout << "particle " << i << " Xpos " << posXi << " Ypos " << posYi << endl;

				//    first get the vectors that we need - the length of the vectors depend on the width of the gaussian
				//    if the pixels are near the edge, the pixels beyond them (which arent in the image) are simply returned as zeros

				if (m_CalculateForceField_TempArray.Length < RangeEitherSide + 1)
				{
					m_CalculateForceField_TempArray = new double[RangeEitherSide + 1]; 
				}

				int count; 

				GetSubsetOfPixelsAlongX(posYi, posXi, RangeEitherSide + 1, ref m_CalculateForceField_TempArray, out count);
				forces[i].X = ensemble.GradientScaleFactor * GaussianSmoothedSlope(posXi, m_CalculateForceField_TempArray, count);

				GetSubsetOfPixelsAlongY(posXi, posYi, RangeEitherSide + 1, ref m_CalculateForceField_TempArray, out count);
				forces[i].Y = ensemble.GradientScaleFactor * GaussianSmoothedSlope(posYi, m_CalculateForceField_TempArray, count);

				// get the gradient scale factor, depending on whether the particle is attractive or repulsive
				ParticleInfo typeInfo = ParticleStaticObjects.AtomPropertiesDefinition.Lookup[(ensemble.Particles[i]).TypeID];
				
				double attractiveOrRepulsiveFactor = typeInfo.AttractiveOrRepulsive;
				forces[i].X *= attractiveOrRepulsiveFactor;
				forces[i].Y *= attractiveOrRepulsiveFactor;

			}

			// set the forces in the Particle Ensemble Object
			ensemble.AddForces(forces);
			// add in the potential energy    
			ensemble.AddPotentialEnergy(PotentialEnergy);		
		}