Beispiel #1
0
        public static void DoPrivate(RSAPrivateKey sk,
                                     byte[] x, int off, int len)
        {
            /*
             * Check that the source array has the proper length
             * (identical to the length of the modulus).
             */
            if (len != sk.N.Length)
            {
                throw new CryptoException(
                          "Invalid source length for RSA private");
            }

            /*
             * Reduce the source value to the proper range.
             */
            ModInt mx = new ModInt(sk.N);

            mx.DecodeReduce(x, off, len);

            /*
             * Compute m1 = x^dp mod p.
             */
            ModInt m1 = new ModInt(sk.P);

            m1.Set(mx);
            m1.Pow(sk.DP);

            /*
             * Compute m2 = x^dq mod q.
             */
            ModInt m2 = new ModInt(sk.Q);

            m2.Set(mx);
            m2.Pow(sk.DQ);

            /*
             * Compute h = (m1 - m2) / q mod p.
             * (Result goes in m1.)
             */
            ModInt m3 = m1.Dup();

            m3.Set(m2);
            m1.Sub(m3);
            m3.Decode(sk.IQ);
            m1.ToMonty();
            m1.MontyMul(m3);

            /*
             * Compute m_2 + q*h. This works on plain integers, but
             * we have efficient and constant-time code for modular
             * integers, so we will do it modulo n.
             */
            m3 = mx;
            m3.Set(m1);
            m1 = m3.Dup();
            m1.Decode(sk.Q);
            m1.ToMonty();
            m3.MontyMul(m1);
            m1.Set(m2);
            m3.Add(m1);

            /*
             * Write result back in x[].
             */
            m3.Encode(x, off, len);
        }
Beispiel #2
0
        public static bool VerifyRaw(ECPublicKey pk,
                                     byte[] hash, int hashOff, int hashLen,
                                     byte[] sig, int sigOff, int sigLen)
        {
            try {
                /*
                 * Get the curve.
                 */
                ECCurve curve = pk.Curve;

                /*
                 * Get r and s from signature. This also verifies
                 * that they do not exceed the subgroup order.
                 */
                if (sigLen == 0 || (sigLen & 1) != 0)
                {
                    return(false);
                }
                int    tlen = sigLen >> 1;
                ModInt oneQ = new ModInt(curve.SubgroupOrder);
                oneQ.Set(1);
                ModInt r = oneQ.Dup();
                ModInt s = oneQ.Dup();
                r.Decode(sig, sigOff, tlen);
                s.Decode(sig, sigOff + tlen, tlen);

                /*
                 * If either r or s was too large, it got set to
                 * zero. We also don't want real zeros.
                 */
                if (r.IsZero || s.IsZero)
                {
                    return(false);
                }

                /*
                 * Convert the hash value to an integer modulo q.
                 * As per FIPS 186-4, if the hash value is larger
                 * than q, then we keep the qlen leftmost bits of
                 * the hash value.
                 */
                int    qBitLength = oneQ.ModBitLength;
                int    hBitLength = hashLen << 3;
                byte[] hv;
                if (hBitLength <= qBitLength)
                {
                    hv = new byte[hashLen];
                    Array.Copy(hash, hashOff, hv, 0, hashLen);
                }
                else
                {
                    int qlen = (qBitLength + 7) >> 3;
                    hv = new byte[qlen];
                    Array.Copy(hash, hashOff, hv, 0, qlen);
                    int rs = (8 - (qBitLength & 7)) & 7;
                    BigInt.RShift(hv, rs);
                }
                ModInt z = oneQ.Dup();
                z.DecodeReduce(hv);

                /*
                 * Apply the verification algorithm:
                 *   w = 1/s mod q
                 *   u = z*w mod q
                 *   v = r*w mod q
                 *   T = u*G + v*Pub
                 *   test whether T.x mod q == r.
                 */
                /*
                 * w = 1/s mod q
                 */
                ModInt w = s.Dup();
                w.Invert();

                /*
                 * u = z*w mod q
                 */
                w.ToMonty();
                ModInt u = w.Dup();
                u.MontyMul(z);

                /*
                 * v = r*w mod q
                 */
                ModInt v = w.Dup();
                v.MontyMul(r);

                /*
                 * Compute u*G
                 */
                MutableECPoint T    = curve.MakeGenerator();
                uint           good = T.MulSpecCT(u.Encode());

                /*
                 * Compute v*iPub
                 */
                MutableECPoint M = pk.iPub.Dup();
                good &= M.MulSpecCT(v.Encode());

                /*
                 * Compute T = u*G+v*iPub
                 */
                uint nd = T.AddCT(M);
                M.DoubleCT();
                T.Set(M, ~nd);
                good &= ~T.IsInfinityCT;

                /*
                 * Get T.x, reduced modulo q.
                 * Signature is valid if and only if we get
                 * the same value as r (and we did not encounter
                 * an error previously).
                 */
                s.DecodeReduce(T.X);
                return((good & r.EqCT(s)) != 0);
            } catch (CryptoException) {
                /*
                 * Exceptions may occur if the key or signature
                 * have invalid values (non invertible, out of
                 * range...). Any such occurrence means that the
                 * signature is not valid.
                 */
                return(false);
            }
        }