Beispiel #1
0
		/// Implement Shape.
		// Collision Detection in Interactive 3D Environments by Gino van den Bergen
		// From Section 3.1.2
		// x = s + a * r
		// norm(x) = radius
		public override bool RayCast(out RayCastOutput output, RayCastInput input,
					Transform transform, int childIndex){
			throw new NotImplementedException();

			//Vec2 position = transform.p + Utilities.Mul(transform.q, m_p);
			//Vec2 s = input.p1 - position;
			//float b = Utilities.Dot(s, s) - m_radius * m_radius;

			//// Solve quadratic equation.
			//Vec2 r = input.p2 - input.p1;
			//float c =  Utilities.Dot(s, r);
			//float rr = Utilities.Dot(r, r);
			//float sigma = c * c - rr * b;

			//// Check for negative discriminant and short segment.
			//if (sigma < 0.0f || rr < Single.Epsilon)
			//{
			//    return false;
			//}

			//// Find the point of intersection of the line with the circle.
			//float a = -(c + (float)Math.Sqrt(sigma));

			//// Is the intersection point on the segment?
			//if (0.0f <= a && a <= input.maxFraction * rr)
			//{
			//    a /= rr;
			//    output.fraction = a;
			//    output.normal = s + a * r;
			//    output.normal.Normalize();
			//    return true;
			//}

			//return false;
		}
Beispiel #2
0
		/// Implement Shape.
		// p = p1 + t * d
		// v = v1 + s * e
		// p1 + t * d = v1 + s * e
		// s * e - t * d = p1 - v1
		public override bool RayCast(out RayCastOutput output, RayCastInput input,
					Transform transform, int childIndex){
			throw new NotImplementedException();

			//// Put the ray into the edge's frame of reference.
			//Vec2 p1 = Utilities.MulT(xf.q, input.p1 - xf.p);
			//Vec2 p2 = Utilities.MulT(xf.q, input.p2 - xf.p);
			//Vec2 d = p2 - p1;

			//Vec2 v1 = m_vertex1;
			//Vec2 v2 = m_vertex2;
			//Vec2 e = v2 - v1;
			//Vec2 normal(e.Y, -e.X);
			//normal.Normalize();

			//// q = p1 + t * d
			//// dot(normal, q - v1) = 0
			//// dot(normal, p1 - v1) + t * dot(normal, d) = 0
			//float numerator = Utilities.Dot(normal, v1 - p1);
			//float denominator = Utilities.Dot(normal, d);

			//if (denominator == 0.0f)
			//{
			//    return false;
			//}

			//float t = numerator / denominator;
			//if (t < 0.0f || input.maxFraction < t)
			//{
			//    return false;
			//}

			//Vec2 q = p1 + t * d;

			//// q = v1 + s * r
			//// s = dot(q - v1, r) / dot(r, r)
			//Vec2 r = v2 - v1;
			//float rr = Utilities.Dot(r, r);
			//if (rr == 0.0f)
			//{
			//    return false;
			//}

			//float s = Utilities.Dot(q - v1, r) / rr;
			//if (s < 0.0f || 1.0f < s)
			//{
			//    return false;
			//}

			//output.fraction = t;
			//if (numerator > 0.0f)
			//{
			//    output.normal = -normal;
			//}
			//else
			//{
			//    output.normal = normal;
			//}
			//return true;
		}
		float RayCastCallback(RayCastInput input, int proxyId)
		{
			
			throw new NotImplementedException();
			//void* userData = broadPhase.GetUserData(proxyId);
			//FixtureProxy* proxy = (FixtureProxy*)userData;
			//Fixture* fixture = proxy.fixture;
			//int index = proxy.childIndex;
			//RayCastOutput output;
			//bool hit = fixture.RayCast(out output, input, index);

			//if (hit)
			//{
			//    float fraction = output.fraction;
			//    Vec2 point = (1.0f - fraction) * input.p1 + fraction * input.p2;
			//    return callback.ReportFixture(fixture, point, output.normal, fraction);
			//}

			//return input.maxFraction;
		}
Beispiel #4
0
		/// Implement Shape.
		public override bool RayCast(out RayCastOutput output, RayCastInput input, Transform transform, int childIndex) {
			throw new NotImplementedException();

			//// Put the ray into the polygon's frame of reference.
			//Vec2 p1 = Utilities.MulT(xf.q, input.p1 - xf.p);
			//Vec2 p2 = Utilities.MulT(xf.q, input.p2 - xf.p);
			//Vec2 d = p2 - p1;

			//float lower = 0.0f, upper = input.maxFraction;

			//int index = -1;

			//for (int i = 0; i < m_count; ++i)
			//{
			//    // p = p1 + a * d
			//    // dot(normal, p - v) = 0
			//    // dot(normal, p1 - v) + a * dot(normal, d) = 0
			//    float numerator = Utilities.Dot(m_normals[i], m_vertices[i] - p1);
			//    float denominator = Utilities.Dot(m_normals[i], d);

			//    if (denominator == 0.0f)
			//    {	
			//        if (numerator < 0.0f)
			//        {
			//            return false;
			//        }
			//    }
			//    else
			//    {
			//        // Note: we want this predicate without division:
			//        // lower < numerator / denominator, where denominator < 0
			//        // Since denominator < 0, we have to flip the inequality:
			//        // lower < numerator / denominator <==> denominator * lower > numerator.
			//        if (denominator < 0.0f && numerator < lower * denominator)
			//        {
			//            // Increase lower.
			//            // The segment enters this half-space.
			//            lower = numerator / denominator;
			//            index = i;
			//        }
			//        else if (denominator > 0.0f && numerator < upper * denominator)
			//        {
			//            // Decrease upper.
			//            // The segment exits this half-space.
			//            upper = numerator / denominator;
			//        }
			//    }

			//    // The use of epsilon here causes the assert on lower to trip
			//    // in some cases. Apparently the use of epsilon was to make edge
			//    // shapes work, but now those are handled separately.
			//    //if (upper < lower - Single.Epsilon)
			//    if (upper < lower)
			//    {
			//        return false;
			//    }
			//}

			//Utilities.Assert(0.0f <= lower && lower <= input.maxFraction);

			//if (index >= 0)
			//{
			//    output.fraction = lower;
			//    output.normal = Utilities.Mul(xf.q, m_normals[index]);
			//    return true;
			//}

			//return false;
		}
Beispiel #5
0
		/// Implement Shape.
		public override bool RayCast(out RayCastOutput output, RayCastInput input,
						Transform transform, int childIndex){
			throw new NotImplementedException();
			//Utilities.Assert(childIndex < m_count);

			//EdgeShape edgeShape;

			//int i1 = childIndex;
			//int i2 = childIndex + 1;
			//if (i2 == m_count)
			//{
			//    i2 = 0;
			//}

			//edgeShape.m_vertex1 = m_vertices[i1];
			//edgeShape.m_vertex2 = m_vertices[i2];

			//return edgeShape.RayCast(output, input, xf, 0);
		}
		public float RayCastCallback(RayCastInput input, int proxyId)
		{
			Actor actor = (Actor)m_tree.GetUserData(proxyId);

			RayCastOutput output;
			bool hit = actor.aabb.RayCast(out output, input);

			if (hit)
			{
				m_rayCastOutput = output;
				m_rayActor = actor;
				m_rayActor.fraction = output.fraction;
				return output.fraction;
			}

			return input.maxFraction;
		}
Beispiel #7
0
		/// Cast a ray against a child shape.
		/// @param output the ray-cast results.
		/// @param input the ray-cast input parameters.
		/// @param transform the transform to be applied to the shape.
		/// @param childIndex the child shape index
		public abstract bool RayCast(out RayCastOutput output, RayCastInput input,
							Transform transform, int childIndex);
Beispiel #8
0
		public bool RayCast(out RayCastOutput output, RayCastInput input) {
			float tmin = -Single.MaxValue;
			float tmax = Single.MaxValue;

			Vec2 p = input.p1;
			Vec2 d = input.p2 - input.p1;
			Vec2 absD = Utilities.Abs(d);
			output = new RayCastOutput();

			Vec2 normal = new Vec2();

			for (int i = 0; i < 2; ++i) {
				if (Math.Abs(i) < Single.Epsilon) {
					// Parallel.
					if (p[i] < lowerBound[i] || upperBound[i] < p[i]) {
						return false;
					}
				} else {
					float inv_d = 1.0f / d[i];
					float t1 = (lowerBound[i] - p[i]) * inv_d;
					float t2 = (upperBound[i] - p[i]) * inv_d;

					// Sign of the normal vector.
					float s = -1.0f;

					if (t1 > t2) {
						float temp = t1;
						t1 = t2;
						t2 = temp;
						s = 1.0f;
					}

					// Push the min up
					if (t1 > tmin) {
						normal.SetZero();
						normal[i] = s;
						tmin = t1;
					}

					// Pull the max down
					tmax = Math.Min(tmax, t2);

					if (tmin > tmax) {
						return false;
					}
				}
			}

			// Does the ray start inside the box?
			// Does the ray intersect beyond the max fraction?
			if (tmin < 0.0f || input.maxFraction < tmin) {
				return false;
			}

			// Intersection.
			output.fraction = tmin;
			output.normal = normal;
			return true;
		}
Beispiel #9
0
		/// Cast a ray against this shape.
		/// @param output the ray-cast results.
		/// @param input the ray-cast input parameters.
		public bool RayCast(out RayCastOutput output, RayCastInput input, int childIndex){
			return m_shape.RayCast(out output, input, m_body.GetTransform(), childIndex);
		}
Beispiel #10
0
 internal void RayCast(RayCastCallbackInternal callback, ref RayCastInput input)
 {
     _tree.RayCast(callback, ref input);
 }