Input for Distance. You have to option to use the shape radii in the computation.
Beispiel #1
0
        /// <summary>
        /// Compute the closest points between two shapes. Supports any combination of: CircleShape and
        /// PolygonShape. The simplex cache is input/output. On the first call set SimplexCache.count to
        /// zero.
        /// </summary>
        /// <param name="output"></param>
        /// <param name="cache"></param>
        /// <param name="input"></param>
        public void distance(DistanceOutput output, SimplexCache cache, DistanceInput input)
        {
            GJK_CALLS++;

            DistanceProxy proxyA = input.proxyA;
            DistanceProxy proxyB = input.proxyB;

            Transform transformA = input.transformA;
            Transform transformB = input.transformB;

            // Initialize the simplex.
            simplex.readCache(cache, proxyA, transformA, proxyB, transformB);

            // Get simplex vertices as an array.
            SimplexVertex[] vertices = simplex.vertices;

            // These store the vertices of the last simplex so that we
            // can check for duplicates and prevent cycling.
            // (pooled above)
            int saveCount = 0;

            simplex.getClosestPoint(closestPoint);
            float distanceSqr1 = closestPoint.lengthSquared();
            float distanceSqr2 = distanceSqr1;

            // Main iteration loop
            int iter = 0;
            while (iter < GJK_MAX_ITERS)
            {

                // Copy simplex so we can identify duplicates.
                saveCount = simplex.m_count;
                for (int i = 0; i < saveCount; i++)
                {
                    saveA[i] = vertices[i].indexA;
                    saveB[i] = vertices[i].indexB;
                }

                switch (simplex.m_count)
                {

                    case 1:
                        break;

                    case 2:
                        simplex.solve2();
                        break;

                    case 3:
                        simplex.solve3();
                        break;

                    default:
                        Debug.Assert(false);
                        break;

                }

                // If we have 3 points, then the origin is in the corresponding triangle.
                if (simplex.m_count == 3)
                {
                    break;
                }

                // Compute closest point.
                simplex.getClosestPoint(closestPoint);
                distanceSqr2 = closestPoint.lengthSquared();

                // ensure progress
                if (distanceSqr2 >= distanceSqr1)
                {
                    // break;
                }
                distanceSqr1 = distanceSqr2;

                // get search direction;
                simplex.getSearchDirection(d);

                // Ensure the search direction is numerically fit.
                if (d.lengthSquared() < Settings.EPSILON * Settings.EPSILON)
                {
                    // The origin is probably contained by a line segment
                    // or triangle. Thus the shapes are overlapped.

                    // We can't return zero here even though there may be overlap.
                    // In case the simplex is a point, segment, or triangle it is difficult
                    // to determine if the origin is contained in the CSO or very close to it.
                    break;
                }
                /*
                * SimplexVertex* vertex = vertices + simplex.m_count; vertex.indexA =
                * proxyA.GetSupport(MulT(transformA.R, -d)); vertex.wA = Mul(transformA,
                * proxyA.GetVertex(vertex.indexA)); Vec2 wBLocal; vertex.indexB =
                * proxyB.GetSupport(MulT(transformB.R, d)); vertex.wB = Mul(transformB,
                * proxyB.GetVertex(vertex.indexB)); vertex.w = vertex.wB - vertex.wA;
                */

                // Compute a tentative new simplex vertex using support points.
                SimplexVertex vertex = vertices[simplex.m_count];

                Rot.mulTransUnsafe(transformA.q, d.negateLocal(), temp);
                vertex.indexA = proxyA.getSupport(temp);
                Transform.mulToOutUnsafe(transformA, proxyA.getVertex(vertex.indexA), vertex.wA);
                // Vec2 wBLocal;
                Rot.mulTransUnsafe(transformB.q, d.negateLocal(), temp);
                vertex.indexB = proxyB.getSupport(temp);
                Transform.mulToOutUnsafe(transformB, proxyB.getVertex(vertex.indexB), vertex.wB);
                vertex.w.set_Renamed(vertex.wB).subLocal(vertex.wA);

                // Iteration count is equated to the number of support point calls.
                ++iter;
                ++GJK_ITERS;

                // Check for duplicate support points. This is the main termination criteria.
                bool duplicate = false;
                for (int i = 0; i < saveCount; ++i)
                {
                    if (vertex.indexA == saveA[i] && vertex.indexB == saveB[i])
                    {
                        duplicate = true;
                        break;
                    }
                }

                // If we found a duplicate support point we must exit to avoid cycling.
                if (duplicate)
                {
                    break;
                }

                // New vertex is ok and needed.
                ++simplex.m_count;
            }

            GJK_MAX_ITERS = MathUtils.max(GJK_MAX_ITERS, iter);

            // Prepare output.
            simplex.getWitnessPoints(output.pointA, output.pointB);
            output.distance = MathUtils.distance(output.pointA, output.pointB);
            output.iterations = iter;

            // Cache the simplex.
            simplex.writeCache(cache);

            // Apply radii if requested.
            if (input.useRadii)
            {
                float rA = proxyA.m_radius;
                float rB = proxyB.m_radius;

                if (output.distance > rA + rB && output.distance > Settings.EPSILON)
                {
                    // Shapes are still no overlapped.
                    // Move the witness points to the outer surface.
                    output.distance -= (rA + rB);
                    normal.set_Renamed(output.pointB).subLocal(output.pointA);
                    normal.normalize();
                    temp.set_Renamed(normal).mulLocal(rA);
                    output.pointA.addLocal(temp);
                    temp.set_Renamed(normal).mulLocal(rB);
                    output.pointB.subLocal(temp);
                }
                else
                {
                    // Shapes are overlapped when radii are considered.
                    // Move the witness points to the middle.
                    // Vec2 p = 0.5f * (output.pointA + output.pointB);
                    output.pointA.addLocal(output.pointB).mulLocal(.5f);
                    output.pointB.set_Renamed(output.pointA);
                    output.distance = 0.0f;
                }
            }
        }
Beispiel #2
0
        /// <summary>
        /// Compute the closest points between two shapes. Supports any combination of: CircleShape and
        /// PolygonShape. The simplex cache is input/output. On the first call set SimplexCache.count to
        /// zero.
        /// </summary>
        /// <param name="output"></param>
        /// <param name="cache"></param>
        /// <param name="input"></param>
        public void GetDistance(DistanceOutput output, SimplexCache cache, DistanceInput input)
        {
            GJK_CALLS++;

            DistanceProxy proxyA = input.ProxyA;
            DistanceProxy proxyB = input.ProxyB;

            Transform transformA = input.TransformA;
            Transform transformB = input.TransformB;

            // Initialize the simplex.
            simplex.ReadCache(cache, proxyA, transformA, proxyB, transformB);

            // Get simplex vertices as an array.
            SimplexVertex[] vertices = simplex.Vertices;

            // These store the vertices of the last simplex so that we
            // can check for duplicates and prevent cycling.
            // (pooled above)

            simplex.GetClosestPoint(closestPoint);
            float distanceSqr1 = closestPoint.LengthSquared();

            // Main iteration loop
            int iter = 0;

            while (iter < GJK_MAX_ITERS)
            {
                // Copy simplex so we can identify duplicates.
                int saveCount = simplex.Count;
                for (int i = 0; i < saveCount; i++)
                {
                    saveA[i] = vertices[i].IndexA;
                    saveB[i] = vertices[i].IndexB;
                }

                switch (simplex.Count)
                {
                case 1:
                    break;

                case 2:
                    simplex.Solve2();
                    break;

                case 3:
                    simplex.Solve3();
                    break;

                default:
                    Debug.Assert(false);
                    break;
                }

                // If we have 3 points, then the origin is in the corresponding triangle.
                if (simplex.Count == 3)
                {
                    break;
                }

                // Compute closest point.
                simplex.GetClosestPoint(closestPoint);
                float distanceSqr2 = closestPoint.LengthSquared();

                // ensure progress
                if (distanceSqr2 >= distanceSqr1)
                {
                    // break;
                }
                distanceSqr1 = distanceSqr2;

                // get search direction;
                simplex.GetSearchDirection(d);

                // Ensure the search direction is numerically fit.
                if (d.LengthSquared() < Settings.EPSILON * Settings.EPSILON)
                {
                    // The origin is probably contained by a line segment
                    // or triangle. Thus the shapes are overlapped.

                    // We can't return zero here even though there may be overlap.
                    // In case the simplex is a point, segment, or triangle it is difficult
                    // to determine if the origin is contained in the CSO or very close to it.
                    break;
                }

                /*
                 * SimplexVertex* vertex = vertices + simplex.m_count; vertex.indexA =
                 * proxyA.GetSupport(MulT(transformA.R, -d)); vertex.wA = Mul(transformA,
                 * proxyA.GetVertex(vertex.indexA)); Vec2 wBLocal; vertex.indexB =
                 * proxyB.GetSupport(MulT(transformB.R, d)); vertex.wB = Mul(transformB,
                 * proxyB.GetVertex(vertex.indexB)); vertex.w = vertex.wB - vertex.wA;
                 */

                // Compute a tentative new simplex vertex using support points.
                SimplexVertex vertex = vertices[simplex.Count];

                Rot.MulTransUnsafe(transformA.Q, d.NegateLocal(), temp);
                vertex.IndexA = proxyA.GetSupport(temp);
                Transform.MulToOutUnsafe(transformA, proxyA.GetVertex(vertex.IndexA), vertex.WA);
                // Vec2 wBLocal;
                Rot.MulTransUnsafe(transformB.Q, d.NegateLocal(), temp);
                vertex.IndexB = proxyB.GetSupport(temp);
                Transform.MulToOutUnsafe(transformB, proxyB.GetVertex(vertex.IndexB), vertex.WB);
                vertex.W.Set(vertex.WB).SubLocal(vertex.WA);

                // Iteration count is equated to the number of support point calls.
                ++iter;
                ++GJK_ITERS;

                // Check for duplicate support points. This is the main termination criteria.
                bool duplicate = false;
                for (int i = 0; i < saveCount; ++i)
                {
                    if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i])
                    {
                        duplicate = true;
                        break;
                    }
                }

                // If we found a duplicate support point we must exit to avoid cycling.
                if (duplicate)
                {
                    break;
                }

                // New vertex is ok and needed.
                ++simplex.Count;
            }

            GJK_MAX_ITERS = MathUtils.Max(GJK_MAX_ITERS, iter);

            // Prepare output.
            simplex.GetWitnessPoints(output.PointA, output.PointB);
            output.Distance   = MathUtils.Distance(output.PointA, output.PointB);
            output.Iterations = iter;

            // Cache the simplex.
            simplex.WriteCache(cache);

            // Apply radii if requested.
            if (input.UseRadii)
            {
                float rA = proxyA.Radius;
                float rB = proxyB.Radius;

                if (output.Distance > rA + rB && output.Distance > Settings.EPSILON)
                {
                    // Shapes are still no overlapped.
                    // Move the witness points to the outer surface.
                    output.Distance -= (rA + rB);
                    normal.Set(output.PointB).SubLocal(output.PointA);
                    normal.Normalize();
                    temp.Set(normal).MulLocal(rA);
                    output.PointA.AddLocal(temp);
                    temp.Set(normal).MulLocal(rB);
                    output.PointB.SubLocal(temp);
                }
                else
                {
                    // Shapes are overlapped when radii are considered.
                    // Move the witness points to the middle.
                    // Vec2 p = 0.5f * (output.pointA + output.pointB);
                    output.PointA.AddLocal(output.PointB).MulLocal(.5f);
                    output.PointB.Set(output.PointA);
                    output.Distance = 0.0f;
                }
            }
        }