CreateSource() public method

Create a new source from provided data and optional header.
public CreateSource ( IEnumerable data, string name = null, string header = null ) : Task
data IEnumerable
name string
header string
return Task
Beispiel #1
0
       public async Task CreateMultiDataset()
       {
           Client c = new Client(userName, apiKey);
           Source.Arguments args = new Source.Arguments();
           args.Add("remote", "https://static.bigml.com/csv/iris.csv");
           args.Add("name", "https://static.bigml.com/csv/iris.csv");
 
           Source s = await c.CreateSource(args);
           s = await c.Wait<Source>(s.Resource);

           Assert.AreEqual(s.StatusMessage.StatusCode, Code.Finished);

           DataSet.Arguments argsDS = new DataSet.Arguments();
           argsDS.Source = s.Resource;
           DataSet ds = await c.CreateDataset(argsDS);
           ds = await c.Wait<DataSet>(ds.Resource);

           // use the other DataSet constructor
           argsDS = new DataSet.Arguments(s);
           DataSet ds2 = await c.CreateDataset(argsDS);
           ds2 = await c.Wait<DataSet>(ds2.Resource);

           argsDS = new DataSet.Arguments();
           argsDS.OriginDatasets.Add(ds.Resource);
           argsDS.OriginDatasets.Add(ds2.Resource);
           argsDS.Name = "Dataset using multi datasets";

           DataSet dsMulti = await c.CreateDataset(argsDS);
           dsMulti = await c.Wait<DataSet>(dsMulti.Resource);

           await c.Delete(s);
           await c.Delete(ds);
           await c.Delete(ds2);
           await c.Delete(dsMulti);
       }
Beispiel #2
0
       public async Task CreateSourceFromRemote()
       {
           Client c = new Client(userName, apiKey);
           Source.Arguments args = new Source.Arguments();
           args.Add("remote", "https://static.bigml.com/csv/iris.csv");

           Source s = await c.CreateSource(args);
           s = await c.Wait<Source>(s.Resource);

           Assert.AreEqual(s.StatusMessage.StatusCode, Code.Finished);

           await c.Delete(s);
       }
Beispiel #3
0
        /// <summary>
        /// Simple sample that runs through all steps to explicitly create a
        /// local prediction from a csv file with the classic iris data.
        /// </summary>
        static async Task MainAsync()
        {
            // New BigML client with username and API key
            Console.Write("user: "******"key: ");
            var ApiKey = Console.ReadLine();

            var client = new Client(User, ApiKey);

            // New source from in-memory stream, with separate header. That's the header
            var source = await client.CreateSource(iris, "Iris.csv", "sepal length, sepal width, petal length, petal width, species");
            // No push, so we need to busy wait for the source to be processed.
            while ((source = await client.Get(source)).StatusMessage.NotSuccessOrFail())
            {
                await Task.Delay(10);
            }
            Console.WriteLine(source.StatusMessage.ToString());

            // Default dataset from source
            var dataset = await client.CreateDataset(source);
            // No push, so we need to busy wait for the dataset to be processed.
            while ((dataset = await client.Get(dataset)).StatusMessage.NotSuccessOrFail())
            {
                await Task.Delay(10);
            }
            Console.WriteLine(dataset.StatusMessage.ToString());

            // Default model from dataset
            var model = await client.CreateModel(dataset);
            // No push, so we need to busy wait for the source to be processed.
            while ((model = await client.Get(model)).StatusMessage.NotSuccessOrFail())
            {
                await Task.Delay(10);
            }
            Console.WriteLine(model.StatusMessage.ToString());

            Console.WriteLine("Creating local model");
            Dictionary<string, dynamic> inputData = new Dictionary<string, dynamic>();
            inputData.Add("000002", 3);
            inputData.Add("000003", 1.5);

            var localModel = model.ModelStructure();
            var nodeResult = localModel.predict(inputData);

            Console.WriteLine("Predict:\n" + nodeResult);
        }