Beispiel #1
0
		private static void Test_BPMIncremental(
			int nClass, int totalFeatures, double noisePrec, int maxItemsInBatch,
			int nChunks, string trainingFile, Vector[] testData)
		{
			Console.WriteLine("\n------- BPM Train Incremental -------");
			VectorGaussian[] wInfer = new VectorGaussian[nClass];
			BPM bpmIncremental = new BPM(nClass, totalFeatures, noisePrec);
			bpmIncremental.TrainingEngine.ShowProgress = false;
			bpmIncremental.TestEngine.ShowProgress = false;
			int LocToStart = 0;
			for (int c = 0; c < nChunks; c++)
			{
				List<Vector>[] dataChunks = DataFromFile.Read(trainingFile, nClass, maxItemsInBatch, ref LocToStart);
				wInfer = bpmIncremental.TrainIncremental(dataChunks);
			}
#if ShowWeights
			for (int i = 0; i < wInfer.GetLength(0); i++)
			{
				Console.WriteLine(wInfer[i].ToString());
			}
#endif
			Console.WriteLine("\nPredictions:");
			Discrete[] predictions = bpmIncremental.Test(testData);
			foreach (Discrete pred in predictions)
				Console.WriteLine(pred);
			Console.WriteLine();
		}
Beispiel #2
0
		private static void Test_BPM(int nClass, int totalFeatures, double noisePrec, string fileName, Vector[] testData)
		{
			Console.WriteLine("\n------- BPM -------");
			List<Vector>[] data = DataFromFile.Read(fileName, nClass);
			BPM bpm = new BPM(nClass, totalFeatures, noisePrec);
			bpm.TrainingEngine.ShowProgress = false;
			bpm.TestEngine.ShowProgress = false;
			VectorGaussian[] wInfer = bpm.Train(data);
#if ShowWeights
			for (int i = 0; i < wInfer.GetLength(0); i++)
			{
				Console.WriteLine(wInfer[i].ToString());
			}
#endif
			Discrete[] predictions = bpm.Test(testData);
			Console.WriteLine("\nPredictions:");
			foreach (Discrete pred in predictions)
				Console.WriteLine(pred);
			Console.WriteLine();
		}
Beispiel #3
0
		/// <summary>
		/// Runs the BPM using dense features.
		/// </summary>
		/// <param name="numClasses">The number of classes</param>
		/// <param name="noisePrecision">The noise precision</param>
		/// <param name="trainingSetFile">The file containing the training set</param>
		/// <param name="testSet">The test set</param>
		private static void RunBPM(int numClasses, double noisePrecision, string trainingSetFile, bool labelAtEnd, bool addBias, Vector[] testSet)
		{
			Console.WriteLine("------- BPM -------");
			int[] labels;
			Vector[] featureVectors = DataUtils.Read(trainingSetFile, labelAtEnd, addBias, out labels);
			BPM bpm = new BPM(numClasses, noisePrecision);
			VectorGaussian[] posteriorWeights = bpm.Train(featureVectors, labels);

#if ShowWeights
			Console.WriteLine("Weights=" + StringUtil.ArrayToString(posteriorWeights));
#endif

			Console.WriteLine("\nPredictions:");
			Discrete[] predictions = bpm.Test(testSet);
			foreach (Discrete prediction in predictions)
				Console.WriteLine(prediction);
			Console.WriteLine();
		}
Beispiel #4
0
		/// <summary>
		/// Runs the BPM using dense features and incremental training.
		/// </summary>
		/// <param name="numClasses">The number of classes</param>
		/// <param name="noisePrecision">The noise precision</param>
		/// <param name="trainingSetFile">The file containing the training set</param>
		/// <param name="testSet">The test set</param>
		/// <param name="maxItemsPerChunk">The maximum number of items per chunk</param>
		/// <param name="numChunks">The total number of chunks</param>
		private static void RunIncrementalBPM(int numClasses, double noisePrecision, string trainingSetFile, bool labelAtEnd, bool addBias, Vector[] testSet, int maxItemsPerChunk, int numChunks)
		{
			Console.WriteLine("\n------- Incremental BPM -------");
			BPM bpm = new BPM(numClasses, noisePrecision);

			int[] labels;
			Vector[] featureVectors;
			VectorGaussian[] posteriorWeights = new VectorGaussian[numClasses];

			int locationToStart = 0;
			for (int c = 0; c < numChunks; c++)
			{
				featureVectors = DataUtils.Read(trainingSetFile, maxItemsPerChunk, labelAtEnd, addBias, out labels, ref locationToStart);
				posteriorWeights = bpm.Train(featureVectors, labels);
			}

#if ShowWeights
			Console.WriteLine("Weights=" + StringUtil.ArrayToString(posteriorWeights));
#endif

			Console.WriteLine("\nPredictions:");
			Discrete[] predictions = bpm.Test(testSet);
			foreach (Discrete pred in predictions)
				Console.WriteLine(pred);
			Console.WriteLine();
		}
Beispiel #5
0
        private void begin_Click(object sender, EventArgs e)
        {
            if (_maxSensitivity < _startSensitivity)
            {
                ShowDialog(@"The maximum sensitivity must be greater than or equal to the minimum sensitivity.",
                    "Error", false);
                return;
            }
            if (!_performingCalcs)
            {
                //Disable input changes
                ChangeStatusOfInputs(false);
                beginButton.Text = @"Cancel";
                _bpm = new BPM(_numOfClasses, _noisePrecision);
                try
                {
                    _trainingModel = FileUtils.ReadFile(_trainingFilePath, _labelAtStartOfLine, _noOfFeatures, _addBias);
                    _testModel = FileUtils.ReadFile(_testFilePath, _labelAtStartOfLine, _noOfFeatures, _addBias);
                    _writer = new StreamWriter(_resultsFilePath, _appendToFile);
                    _totalRuns = (int) Math.Ceiling(_noOfRuns*(1 + ((_maxSensitivity - _startSensitivity)/_sensitivityIncrement)));
                    _last = DateTime.Now;
                    bw.WorkerReportsProgress = true;
                    bw.WorkerSupportsCancellation = true;
                    bw.DoWork += bw_DoWork;
                    bw.ProgressChanged += bw_ProgressChanged;
                    bw.RunWorkerCompleted += bw_RunWorkerCompleted;
                    bw.RunWorkerAsync();
                    progressBar1.Maximum = _totalRuns;
                    _performingCalcs = true;
                    _prevRem = _totalRuns;

                }
                catch (Exception exception)
                {
                    ShowDialog("Sorry, there was an error reading the input data" + exception.GetType(), "Error", true);
                    beginButton.Text = @"Begin processing";
                    ChangeStatusOfInputs(true);
                }
            }
            else
            {
                bw.CancelAsync();
                beginButton.Text = @"Begin processing";
                //Tidy up
                statusLabel.Text = @"";
            }

        }