Beispiel #1
0
        /// <summary>
        /// Implementation of Gear's BDF method with dynamically changed step size and order. Order changes between 1 and 3.
        /// </summary>
        /// <param name="t0">Initial time point</param>
        /// <param name="x0">Initial phase vector</param>
        /// <param name="f">Right parts of the system</param>
        /// <param name="opts">Options for accuracy control and initial step size</param>
        /// <returns>Sequence of infinite number of solution points.</returns>
        private void InternalInitialize(double t0, double[] x0, Action <double, double[], double[]> f, GearsBDFOptions opts)
        {
            if (null == _denseJacobianEvaluation && null == _sparseJacobianEvaluation)
            {
                throw new InvalidProgramException("Ooops, how could this happen?");
            }

            double t = t0;
            var    x = (double[])x0.Clone();

            n = x0.Length;

            this.f    = f;
            this.opts = opts;

            //Initial step size.
            _dydt = _dydt ?? new double[n];
            var dt    = EvaluateRatesAndGetDt(t0, x0, _dydt);
            var resdt = dt;

            int qmax  = 5;
            int qcurr = 2;

            _zn_saved = new DoubleMatrix(n, qmax + 1);

            currstate = new NordsieckState(n, qmax, qcurr, dt, t, x0, _dydt);

            isIterationFailed = false;

            tout = t0;
            xout = (double[])x0.Clone();

            // ---------------------------------------------------------------------------------------------------
            // End of initialize
            // ---------------------------------------------------------------------------------------------------

            // Firstly, return initial point
            // EvaluateInternally(t0, true, out t0, xout);
            _initializationState = InitializationState.NotInitialized;
        }
Beispiel #2
0
        /// <summary>
        /// Initialize Gear's BDF method with dynamically changed step size and order.
        /// </summary>
        /// <param name="t0">Initial time point</param>
        /// <param name="y0">Initial values (at time <paramref name="t0"/>).</param>
        /// <param name="dydt">Evaluation function for the derivatives. First argument is the time, second argument are the current y values. The third argument is an array where the derivatives are expected to be placed into.</param>
        /// <param name="opts">Options for the ODE method (can be null).</param>
        public void Initialize(double t0, double[] y0, Action <double, double[], double[]> dydt, GearsBDFOptions opts)
        {
            if (null == y0)
            {
                throw new ArgumentNullException(nameof(y0));
            }
            if (null == dydt)
            {
                throw new ArgumentNullException(nameof(dydt));
            }

            _denseJacobianEvaluation = new DenseJacobianEvaluator(y0.Length, dydt).Jacobian;
            InternalInitialize(t0, y0, dydt, opts ?? GearsBDFOptions.Default);
        }
Beispiel #3
0
        /// <summary>
        /// Initialize Gear's BDF method with dynamically changed step size and order.
        /// </summary>
        /// <param name="t0">Initial time point</param>
        /// <param name="y0">Initial values (at time <paramref name="t0"/>).</param>
        /// <param name="dydt">Evaluation function for the derivatives. First argument is the time, second argument are the current y values. The third argument is an array where the derivatives are expected to be placed into.</param>
        /// <param name="sparseJacobianEvaluation">Evaluation for the dense jacobian matrix. First argument is the time, second argument are the current y values. If null is passed for this argument, a default evaluator is used.</param>
        /// <param name="opts">Options for the ODE method (can be null).</param>
        public void InitializeSparse(double t0, double[] y0, Action <double, double[], double[]> dydt, Func <double, double[], SparseDoubleMatrix> sparseJacobianEvaluation, GearsBDFOptions opts)
        {
            if (null == y0)
            {
                throw new ArgumentNullException(nameof(y0));
            }
            if (null == dydt)
            {
                throw new ArgumentNullException(nameof(dydt));
            }

            _sparseJacobianEvaluation = sparseJacobianEvaluation ?? new SparseJacobianEvaluator(y0.Length, dydt).Jacobian;
            InternalInitialize(t0, y0, dydt, opts ?? GearsBDFOptions.Default);
        }
Beispiel #4
0
            /// <summary>
            /// Execute predictor-corrector scheme for Nordsieck's method
            /// </summary>
            /// <param name="flag"></param>
            /// <param name="f">Evaluation of the deriatives. First argument is time, second arg are the state variables, and 3rd arg is the array to accomodate the derivatives.</param>
            /// <param name="denseJacobianEvaluation">Evaluation of the jacobian.</param>
            /// <param name="sparseJacobianEvaluation">Evaluation of the jacobian as a sparse matrix. Either this or the previous arg must be valid.</param>
            /// <param name="opts">current options</param>
            /// <returns>en - current error vector</returns>
            internal void PredictorCorrectorScheme(
                ref bool flag,
                Action <double, double[], double[]> f,
                Func <double, double[], IROMatrix <double> > denseJacobianEvaluation,
                Func <double, double[], SparseDoubleMatrix> sparseJacobianEvaluation,
                GearsBDFOptions opts
                )
            {
                NordsieckState currstate = this;
                NordsieckState newstate  = this;
                int            n         = currstate._xn.Length;

                VectorMath.Copy(currstate._en, ecurr);
                VectorMath.Copy(currstate._xn, xcurr);
                var x0 = currstate._xn;

                MatrixMath.Copy(currstate._zn, zcurr); // zcurr now is old nordsieck matrix
                var qcurr = currstate._qn;             // current degree
                var qmax  = currstate._qmax;           // max degree
                var dt    = currstate._dt;
                var t     = currstate._tn;

                MatrixMath.Copy(currstate._zn, z0); // save Nordsieck matrix

                //Tolerance computation factors
                double Cq  = Math.Pow(qcurr + 1, -1.0);
                double tau = 1.0 / (Cq * Factorial(qcurr) * l[qcurr - 1][qcurr]);

                int count = 0;

                double Dq = 0.0, DqUp = 0.0, DqDown = 0.0;
                double delta = 0.0;

                //Scaling factors for the step size changing
                //with new method order q' = q, q + 1, q - 1, respectively
                double rSame, rUp, rDown;

                if (null != denseJacobianEvaluation)
                {
                    var J = denseJacobianEvaluation(t + dt, xcurr);
                    if (J.GetType() != P?.GetType())
                    {
                        AllocatePMatrixForJacobian(J);
                    }

                    do
                    {
                        MatrixMath.MapIndexed(J, dt * b[qcurr - 1], (i, j, aij, factor) => (i == j ? 1 : 0) - aij * factor, P, Zeros.AllowSkip); // P = Identity - J*dt*b[qcurr-1]
                        VectorMath.Copy(xcurr, xprev);
                        f(t + dt, xcurr, ftdt);
                        MatrixMath.CopyColumn(z0, 1, colExtract);                                                       // 1st derivative/dt
                        VectorMath.Map(ftdt, colExtract, ecurr, dt, (ff, c, e, local_dt) => local_dt * ff - c - e, gm); // gm = dt * f(t + dt, xcurr) - z0.GetColumn(1) - ecurr;
                        gaussSolver.SolveDestructive(P, gm, tmpVec1);
                        VectorMath.Add(ecurr, tmpVec1, ecurr);                                                          //	ecurr = ecurr + P.SolveGE(gm);
                        VectorMath.Map(x0, ecurr, b[qcurr - 1], (x, e, local_b) => x + e * local_b, xcurr);             //	xcurr = x0 + b[qcurr - 1] * ecurr;

                        //Row dimension is smaller than zcurr has
                        int M_Rows    = ecurr.Length;
                        int M_Columns = l[qcurr - 1].Length;
                        //So, "expand" the matrix
                        MatrixMath.MapIndexed(z0, (i, j, z) => z + (i < M_Rows && j < M_Columns ? ecurr[i] * l[qcurr - 1][j] : 0.0d), zcurr);

                        Dq = ToleranceNorm(ecurr, opts.RelativeTolerance, opts.AbsoluteTolerance, xprev);
                        var factor_deltaE = (1.0 / (qcurr + 2) * l[qcurr - 1][qcurr - 1]);
                        VectorMath.Map(ecurr, currstate._en, factor_deltaE, (e, c, factor) => (e - c) * factor, deltaE); // deltaE = (ecurr - currstate.en)*(1.0 / (qcurr + 2) * l[qcurr - 1][qcurr - 1])

                        DqUp = ToleranceNorm(deltaE, opts.RelativeTolerance, opts.AbsoluteTolerance, xcurr);
                        zcurr.CopyColumn(qcurr - 1, colExtract);
                        DqDown = ToleranceNorm(colExtract, opts.RelativeTolerance, opts.AbsoluteTolerance, xcurr);
                        delta  = Dq / (tau / (2 * (qcurr + 2)));
                        count++;
                    } while (delta > 1.0d && count < opts.NumberOfIterations);
                }
                else if (null != sparseJacobianEvaluation)
                {
                    SparseDoubleMatrix J = sparseJacobianEvaluation(t + dt, xcurr);
                    var P = new SparseDoubleMatrix(J.RowCount, J.ColumnCount);

                    do
                    {
                        J.MapSparseIncludingDiagonal((x, i, j) => (i == j ? 1 : 0) - x * dt * b[qcurr - 1], P);
                        VectorMath.Copy(xcurr, xprev);
                        f(t + dt, xcurr, ftdt);
                        MatrixMath.CopyColumn(z0, 1, colExtract);
                        VectorMath.Map(ftdt, colExtract, ecurr, (ff, c, e) => dt * ff - c - e, gm); // gm = dt * f(t + dt, xcurr) - z0.GetColumn(1) - ecurr;
                        gaussSolver.SolveDestructive(P, gm, tmpVec1);
                        VectorMath.Add(ecurr, tmpVec1, ecurr);                                      //	ecurr = ecurr + P.SolveGE(gm);
                        VectorMath.Map(x0, ecurr, (x, e) => x + e * b[qcurr - 1], xcurr);           // xcurr = x0 + b[qcurr - 1] * ecurr;

                        //Row dimension is smaller than zcurr has
                        int M_Rows    = ecurr.Length;
                        int M_Columns = l[qcurr - 1].Length;
                        //So, "expand" the matrix
                        MatrixMath.MapIndexed(z0, (i, j, z) => z + (i < M_Rows && j < M_Columns ? ecurr[i] * l[qcurr - 1][j] : 0.0d), zcurr);

                        Dq = ToleranceNorm(ecurr, opts.RelativeTolerance, opts.AbsoluteTolerance, xprev);
                        var factor_deltaE = (1.0 / (qcurr + 2) * l[qcurr - 1][qcurr - 1]);
                        VectorMath.Map(ecurr, currstate._en, (e, c) => (e - c) * factor_deltaE, deltaE); // deltaE = (ecurr - currstate.en)*(1.0 / (qcurr + 2) * l[qcurr - 1][qcurr - 1])

                        DqUp   = ToleranceNorm(deltaE, opts.RelativeTolerance, opts.AbsoluteTolerance, xcurr);
                        DqDown = ToleranceNorm(zcurr.GetColumn(qcurr - 1), opts.RelativeTolerance, opts.AbsoluteTolerance, xcurr);
                        delta  = Dq / (tau / (2 * (qcurr + 2)));
                        count++;
                    } while (delta > 1.0d && count < opts.NumberOfIterations);
                }
                else // neither denseJacobianEvaluation nor sparseJacobianEvaluation valid
                {
                    throw new ArgumentNullException(nameof(denseJacobianEvaluation), "Either denseJacobianEvaluation or sparseJacobianEvaluation must be set!");
                }

                //======================================

                var nsuccess = count < opts.NumberOfIterations ? currstate._nsuccess + 1 : 0;

                if (count < opts.NumberOfIterations)
                {
                    flag = false;
                    MatrixMath.Copy(zcurr, newstate._zn);
                    zcurr.CopyColumn(0, newstate._xn);
                    VectorMath.Copy(ecurr, newstate._en);
                }
                else
                {
                    flag = true;
                    // MatrixMath.Copy(currstate.zn, newstate.zn); // null operation since currstate and newstate are identical
                    currstate._zn.CopyColumn(0, newstate._xn);
                    VectorMath.Copy(currstate._en, newstate._en); // null operation since currstate and newstate are identical
                }

                //Compute step size scaling factors
                rUp = 0.0;

                if (currstate._qn < currstate._qmax)
                {
                    rUp = rUp = 1.0 / 1.4 / (Math.Pow(DqUp, 1.0 / (qcurr + 2)) + 1e-6);
                }

                rSame = 1.0 / 1.2 / (Math.Pow(Dq, 1.0 / (qcurr + 1)) + 1e-6);

                rDown = 0.0;

                if (currstate._qn > 1)
                {
                    rDown = 1.0 / 1.3 / (Math.Pow(DqDown, 1.0 / (qcurr)) + 1e-6);
                }

                //======================================
                _nsuccess = nsuccess >= _qn ? 0 : nsuccess;
                //Step size scale operations

                if (rSame >= rUp)
                {
                    if (rSame <= rDown && nsuccess >= _qn && _qn > 1)
                    {
                        _qn = _qn - 1;
                        _Dq = DqDown;

                        for (int i = 0; i < n; i++)
                        {
                            for (int j = newstate._qn + 1; j < qmax + 1; j++)
                            {
                                _zn[i, j] = 0.0;
                            }
                        }
                        nsuccess = 0;
                        _rFactor = rDown;
                    }
                    else
                    {
                        // _qn = _qn;
                        _Dq      = Dq;
                        _rFactor = rSame;
                    }
                }
                else
                {
                    if (rUp >= rDown)
                    {
                        if (rUp >= rSame && nsuccess >= _qn && _qn < _qmax)
                        {
                            _qn      = _qn + 1;
                            _Dq      = DqUp;
                            _rFactor = rUp;
                            nsuccess = 0;
                        }
                        else
                        {
                            // _qn = _qn;
                            _Dq      = Dq;
                            _rFactor = rSame;
                        }
                    }
                    else
                    {
                        if (nsuccess >= _qn && _qn > 1)
                        {
                            _qn = _qn - 1;
                            _Dq = DqDown;

                            for (int i = 0; i < n; i++)
                            {
                                for (int j = newstate._qn + 1; j < qmax + 1; j++)
                                {
                                    _zn[i, j] = 0.0;
                                }
                            }
                            nsuccess = 0;
                            _rFactor = rDown;
                        }
                        else
                        {
                            // _qn = _qn;
                            _Dq      = Dq;
                            _rFactor = rSame;
                        }
                    }
                }

                _dt = dt;
                _tn = t;
            }