GetLayerInput() public method

Gets the learning data needed to train the currently selected layer. The return of this function should then be passed to RunEpoch(double[][]) to actually run a learning epoch.
public GetLayerInput ( double input ) : double[][]
input double The batch of input data.
return double[][]
        public void ExampleTest1()
        {
            Accord.Math.Tools.SetupGenerator(0);

            // We'll use a simple XOR function as input. 

            double[][] inputs =
            { 
                new double[] { 0, 0 }, // 0 xor 0
                new double[] { 0, 1 }, // 0 xor 1
                new double[] { 1, 0 }, // 1 xor 0
                new double[] { 1, 1 }, // 1 xor 1
            };

            // XOR output, corresponding to the input.
            double[][] outputs = 
            {
                new double[] { 0 }, // 0 xor 0 = 0
                new double[] { 1 }, // 0 xor 1 = 1
                new double[] { 1 }, // 1 xor 0 = 1
                new double[] { 0 }, // 1 xor 1 = 0
            };

            // Setup the deep belief network (2 inputs, 3 hidden, 1 output)
            DeepBeliefNetwork network = new DeepBeliefNetwork(2, 3, 1);

            // Initialize the network with Gaussian weights
            new GaussianWeights(network, 0.1).Randomize();

            // Update the visible layer with the new weights
            network.UpdateVisibleWeights();


            // Setup the learning algorithm.
            DeepBeliefNetworkLearning teacher = new DeepBeliefNetworkLearning(network)
            {
                Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
                {
                    LearningRate = 0.1,
                    Momentum = 0.5,
                    Decay = 0.001,
                }
            };



            // Unsupervised learning on each hidden layer, except for the output.
            for (int i = 0; i < network.Layers.Length - 1; i++)
            {
                teacher.LayerIndex = i;

                // Compute the learning data with should be used
                var layerInput = teacher.GetLayerInput(inputs);

                // Train the layer iteratively
                for (int j = 0; j < 5000; j++)
                    teacher.RunEpoch(layerInput);
            }



            // Supervised learning on entire network, to provide output classification.
            var backpropagation = new BackPropagationLearning(network)
            {
                LearningRate = 0.1,
                Momentum = 0.5
            };

            // Run supervised learning.
            for (int i = 0; i < 5000; i++)
                backpropagation.RunEpoch(inputs, outputs);


            // Test the resulting accuracy.
            int correct = 0;
            for (int i = 0; i < inputs.Length; i++)
            {
                double[] outputValues = network.Compute(inputs[i]);
                double outputResult = outputValues.First() >= 0.5 ? 1 : 0;

                if (outputResult == outputs[i].First())
                {
                    correct++;
                }
            }

            Assert.AreEqual(4, correct);
        }
Beispiel #2
0
        public void Train(double[][] i, double[][] o = null, int outputLength = 10, int hiddenLayer = -1)
        {
            if (n == null)
            {
                if (File.Exists(p)) n = DeepBeliefNetwork.Load(p);
                else
                {
                    outputLength = (o == null) ? outputLength : o[0].Length;
                    hiddenLayer = (hiddenLayer == -1) ? (int)Math.Log(i[0].Length, outputLength) : hiddenLayer;
                    List<int> layers = new List<int>();
                    for (int j = 0; j < hiddenLayer; j++) layers.Add(i[0].Length);
                    layers.Add(outputLength);
                    n = new DeepBeliefNetwork(new BernoulliFunction(), i[0].Length, layers.ToArray());
                    new GaussianWeights(n).Randomize();
                }
            }

            dynamic t;
            if (o == null)
            {
                t = new DeepBeliefNetworkLearning(n) { Algorithm = (h, v, j) => new ContrastiveDivergenceLearning(h, v), LayerIndex = n.Machines.Count - 1, };
                while (true) e = t.RunEpoch(t.GetLayerInput(i));
            }
            else
            {
                t = new DeepNeuralNetworkLearning(n) { Algorithm = (ann, j) => new ParallelResilientBackpropagationLearning(ann), LayerIndex = n.Machines.Count - 1, };
                while (true) e = t.RunEpoch(t.GetLayerInput(i), o);
            }
        }
        private static DeepBeliefNetwork createNetwork(double[][] inputs)
        {
            DeepBeliefNetwork network = new DeepBeliefNetwork(6, 2, 1);

            network.Machines[0].Hidden.Neurons[0].Weights[0] = 0.00461421;
            network.Machines[0].Hidden.Neurons[0].Weights[1] = 0.04337112;
            network.Machines[0].Hidden.Neurons[0].Weights[2] = -0.10839599;
            network.Machines[0].Hidden.Neurons[0].Weights[3] = -0.06234004;
            network.Machines[0].Hidden.Neurons[0].Weights[4] = -0.03017057;
            network.Machines[0].Hidden.Neurons[0].Weights[5] = 0.09520391;
            network.Machines[0].Hidden.Neurons[0].Threshold = 0;

            network.Machines[0].Hidden.Neurons[1].Weights[0] = 0.08263872;
            network.Machines[0].Hidden.Neurons[1].Weights[1] = -0.118437;
            network.Machines[0].Hidden.Neurons[1].Weights[2] = -0.21710971;
            network.Machines[0].Hidden.Neurons[1].Weights[3] = 0.02332903;
            network.Machines[0].Hidden.Neurons[1].Weights[4] = 0.00953116;
            network.Machines[0].Hidden.Neurons[1].Weights[5] = 0.09870652;
            network.Machines[0].Hidden.Neurons[1].Threshold = 0;

            network.Machines[0].Visible.Neurons[0].Threshold = 0;
            network.Machines[0].Visible.Neurons[1].Threshold = 0;
            network.Machines[0].Visible.Neurons[2].Threshold = 0;
            network.Machines[0].Visible.Neurons[3].Threshold = 0;
            network.Machines[0].Visible.Neurons[4].Threshold = 0;
            network.Machines[0].Visible.Neurons[5].Threshold = 0;

            network.UpdateVisibleWeights();


            DeepBeliefNetworkLearning target = new DeepBeliefNetworkLearning(network)
            {
                Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
            };

            for (int layer = 0; layer < 2; layer++)
            {

                target.LayerIndex = layer;

                double[][] layerInputs = target.GetLayerInput(inputs);

                int iterations = 5000;
                double[] errors = new double[iterations];
                for (int i = 0; i < iterations; i++)
                    errors[i] = target.RunEpoch(layerInputs);
            }

            return network;
        }
Beispiel #4
0
        static void Main(string[] args)
        {
            double[][] inputs;
            double[][] outputs;
            double[][] testInputs;
            double[][] testOutputs;

            // Load ascii digits dataset.
            inputs = DataManager.Load(@"../../../data/data.txt", out outputs);

            // The first 500 data rows will be for training. The rest will be for testing.
            testInputs = inputs.Skip(500).ToArray();
            testOutputs = outputs.Skip(500).ToArray();
            inputs = inputs.Take(500).ToArray();
            outputs = outputs.Take(500).ToArray();

            // Setup the deep belief network and initialize with random weights.
            DeepBeliefNetwork network = new DeepBeliefNetwork(inputs.First().Length, 10, 10);
            new GaussianWeights(network, 0.1).Randomize();
            network.UpdateVisibleWeights();
            
            // Setup the learning algorithm.
            DeepBeliefNetworkLearning teacher = new DeepBeliefNetworkLearning(network)
            {
                Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
                {
                    LearningRate = 0.1,
                    Momentum = 0.5,
                    Decay = 0.001,
                }
            };

            // Setup batches of input for learning.
            int batchCount = Math.Max(1, inputs.Length / 100);
            // Create mini-batches to speed learning.
            int[] groups = Accord.Statistics.Tools.RandomGroups(inputs.Length, batchCount);
            double[][][] batches = inputs.Subgroups(groups);
            // Learning data for the specified layer.
            double[][][] layerData;

            // Unsupervised learning on each hidden layer, except for the output layer.
            for (int layerIndex = 0; layerIndex < network.Machines.Count - 1; layerIndex++)
            {
                teacher.LayerIndex = layerIndex;
                layerData = teacher.GetLayerInput(batches);
                for (int i = 0; i < 200; i++)
                {
                    double error = teacher.RunEpoch(layerData) / inputs.Length;
                    if (i % 10 == 0)
                    {
                        Console.WriteLine(i + ", Error = " + error);
                    }
                }
            }

            // Supervised learning on entire network, to provide output classification.
            var teacher2 = new BackPropagationLearning(network)
            {
                LearningRate = 0.1,
                Momentum = 0.5
            };

            // Run supervised learning.
            for (int i = 0; i < 500; i++)
            {
                double error = teacher2.RunEpoch(inputs, outputs) / inputs.Length;
                if (i % 10 == 0)
                {
                    Console.WriteLine(i + ", Error = " + error);
                }
            }

            // Test the resulting accuracy.
            int correct = 0;
            for (int i = 0; i < inputs.Length; i++)
            {
                double[] outputValues = network.Compute(testInputs[i]);
                if (DataManager.FormatOutputResult(outputValues) == DataManager.FormatOutputResult(testOutputs[i]))
                {
                    correct++;
                }
            }

            Console.WriteLine("Correct " + correct + "/" + inputs.Length + ", " + Math.Round(((double)correct / (double)inputs.Length * 100), 2) + "%");
            Console.Write("Press any key to quit ..");
            Console.ReadKey();
        }
Beispiel #5
0
        private void learnLayerUnsupervised()
        {
            if (!Main.CanGenerate) return;
            Dispatcher dispatcher = Dispatcher.CurrentDispatcher;

            new Task(() =>
            {
                DeepBeliefNetworkLearning teacher = new DeepBeliefNetworkLearning(Main.Network)
                {
                    Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
                    {
                        LearningRate = LearningRate,
                        Momentum = 0.5,
                        Decay = WeightDecay,
                    },

                    LayerIndex = SelectedLayerIndex - 1,
                };

                double[][] inputs;
                Main.Database.Training.GetInstances(out inputs);
                int batchCount = Math.Max(1, inputs.Length / BatchSize);

                // Create mini-batches to speed learning
                int[] groups = Accord.Statistics.Tools
                    .RandomGroups(inputs.Length, batchCount);
                double[][][] batches = inputs.Subgroups(groups);

                // Gather learning data for the layer
                double[][][] layerData = teacher.GetLayerInput(batches);
                var cd = teacher.GetLayerAlgorithm(teacher.LayerIndex) as ContrastiveDivergenceLearning;

                // Start running the learning procedure
                for (int i = 0; i < Epochs && !shouldStop; i++)
                {
                    double error = teacher.RunEpoch(layerData) / inputs.Length;

                    dispatcher.BeginInvoke((Action<int, double>)updateError,
                        DispatcherPriority.ContextIdle, i + 1, error);

                    if (i == 10)
                        cd.Momentum = Momentum;
                }

                IsLearning = false;

            }).Start();
        }