public double Sample(Agent agent, int horizon) { double reward = 0.0; if (horizon == 0) { return (int)reward; } else if (this.Type == ChanceNode) { var percept = agent.GeneratePerceptAndUpdate(); int observation = percept.Item1; int randomReward = percept.Item2; if (!this.Children.ContainsKey(observation)) {//new node ->add it as decision node this.Children[observation] = new MonteCarloSearchNode(DecisionNode); } MonteCarloSearchNode observationChild = this.Children[observation]; reward = randomReward + observationChild.Sample(agent, horizon-1); } else if (this.Visits == 0) //unvisited decision node or we have exceeded maximum tree depth { reward = agent.Playout(horizon); // Console.WriteLine("from playout: reward ="+reward); } else { //Previously visited decision node int actionNullable = this.SelectAction(agent); int action = actionNullable; agent.ModelUpdateAction(action); if (!this.Children.ContainsKey(action)){ //this action is new chance child this.Children[action]=new MonteCarloSearchNode(ChanceNode); } MonteCarloSearchNode actionChild = this.Children[action]; reward = actionChild.Sample(agent, horizon); //it is not clear if not horizon-1. (asks pyaixi) } double visitsDouble = this.Visits; //Console.WriteLine("> {3} - {0}, {1}, {2}", this.mean, reward, (reward + (visitsDouble * this.mean) / (visitsDouble + 1.0)), visitsDouble); this.Mean = (reward + (visitsDouble*this.Mean)) / (1.0 + visitsDouble); this.Visits = this.Visits+1; return reward; }
//Interaction loop for interaction between agent and environment. //This part is done in BrainSimulator in other version // interaction begins with generating observation and reward from environment and giving it to agent // agent then generates action and cycle repeats. public static void InteractionLoop(Agent agent, AIXIEnvironment env, Dictionary<string, string> options) { Random rnd; if (options.ContainsKey("random-seed")) { int seed; int.TryParse(options["random-seed"], out seed); rnd = new Random(seed); } else { rnd = new Random(); } // Exploration = try random action // probability will decay exponentially as exploreRate * exploreDecay ** round_number var exploreRate = 0.0; if (options.ContainsKey("exploration")) { exploreRate = Utils.MyToDouble(options["exploration"]); } var explore = exploreRate > 0; var exploreDecay = 0.0; if (options.ContainsKey("explore-decay")) { exploreDecay = Utils.MyToDouble(options["explore-decay"]); } Debug.Assert(0.0 <= exploreRate); Debug.Assert(0.0 <= exploreDecay && exploreDecay <= 1.0); //automatic halting after certain number of rounds var terminateAge = 0; if (options.ContainsKey("terminate-age")) { terminateAge = Convert.ToInt32(options["terminate-age"]); } var terminateCheck = terminateAge > 0; Debug.Assert(0 <= terminateAge); // when learning period passes, agent will stop changing/improving model and just use it. var learningPeriod = 0; if (options.ContainsKey("learning-period")) { learningPeriod = Convert.ToInt32(options["learning-period"]); } Debug.Assert(0 <= learningPeriod); var cycle = 0; while (!env.IsFinished) { if (terminateCheck && agent.Age > terminateAge) { break; } var cycleStartTime = DateTime.Now; var observation = env.Observation; var reward = env.Reward; if (learningPeriod > 0 && cycle > learningPeriod) { explore = false; } //give observation and reward to agent. agent.ModelUpdatePercept(observation, reward); var explored = false; int action; if (explore && rnd.NextDouble() < exploreRate) { explored = true; action = agent.GenerateRandomAction(); } else { //get agents response to observation and reward action = agent.Search(); } //pass agent's action to environment env.PerformAction(action); agent.ModelUpdateAction(action); var timeTaken = DateTime.Now - cycleStartTime; Console.WriteLine("{0}:\t{1},{2},{3}\t{4},{5} \t{6},{7}\t>{8},{9}", cycle, observation, reward, action, explored, exploreRate, agent.TotalReward, agent.AverageReward(), timeTaken, agent.ModelSize() ); if (explore) { exploreRate *= exploreDecay; } cycle += 1; } }
public int SelectAction(Agent agent) { Debug.Assert(agent.MaximumReward() != null, "this is weird place, - in selection action"); double exploreBias = (double)agent.Horizon * agent.MaximumReward().Value; double explorationNumerator = this.ExplorationConstant * Math.Log(this.Visits); int bestAction = -1; double bestPriority = double.NegativeInfinity; foreach (int action in agent.Environment.ValidActions) { MonteCarloSearchNode node=null; if (this.Children.ContainsKey(action)) { node=this.Children[action]; } double priority; if (node == null || node.Visits == 0) { // previously unexplored node priority = this.UnexploredBias; //unexplored bias } else{ priority = node.Mean + exploreBias * Math.Sqrt(explorationNumerator / node.Visits); } if (priority > (bestPriority+Utils.RandomDouble(0, 0.001))){ bestAction=action; bestPriority=priority; } } return bestAction; }