standardizeApart() public method

public standardizeApart ( Chain aChain ) : Chain
aChain AIMA.Core.Logic.FOL.KB.Data.Chain
return AIMA.Core.Logic.FOL.KB.Data.Chain
Beispiel #1
0
        // END-InferenceProcedure
        //

        //
        // PRIVATE METHODS
        //

        /**
         * <code>
         * function FOL-BC-ASK(KB, goals, theta) returns a set of substitutions
         *   input: KB, a knowledge base
         *          goals, a list of conjuncts forming a query (theta already applied)
         *          theta, the current substitution, initially the empty substitution {}
         * </code>
         */
        private List<List<ProofStepBwChGoal>> folbcask(FOLKnowledgeBase KB,
                BCAskAnswerHandler ansHandler, List<Literal> goals,
                Dictionary<Variable, Term> theta)
        {
            List<List<ProofStepBwChGoal>> thisLevelProofSteps = new List<List<ProofStepBwChGoal>>();
            // local variables: answers, a set of substitutions, initially empty

            // if goals is empty then return {theta}
            if (goals.Count==0)
            {
                thisLevelProofSteps.Add(new List<ProofStepBwChGoal>());
                return thisLevelProofSteps;
            }

            // qDelta <- SUBST(theta, FIRST(goals))
            Literal qDelta = KB.subst(theta, goals[0]);

            // for each sentence r in KB where
            // STANDARDIZE-APART(r) = (p1 ^ ... ^ pn => q)
            foreach (Clause r in KB.getAllDefiniteClauses())
            {
                Clause r2 = KB.standardizeApart(r);
                // and thetaDelta <- UNIFY(q, qDelta) succeeds
                Dictionary<Variable, Term> thetaDelta = KB.unify(r2.getPositiveLiterals()
                        [0].getAtomicSentence(), qDelta.getAtomicSentence());
                if (null != thetaDelta)
                {
                    // new_goals <- [p1,...,pn|REST(goals)]
                    List<Literal> newGoals = new List<Literal>(r2
                            .getNegativeLiterals());
                    newGoals.AddRange(goals.Skip(1));
                    // answers <- FOL-BC-ASK(KB, new_goals, COMPOSE(thetaDelta,
                    // theta)) U answers
                    Dictionary<Variable, Term> composed = compose(KB, thetaDelta, theta);
                    List<List<ProofStepBwChGoal>> lowerLevelProofSteps = folbcask(
                            KB, ansHandler, newGoals, composed);

                    ansHandler.addProofStep(lowerLevelProofSteps, r2, qDelta,
                            composed);

                    thisLevelProofSteps.AddRange(lowerLevelProofSteps);
                }
            }

            // return answers
            return thisLevelProofSteps;
        }
Beispiel #2
0
        //
        // START-InferenceProcedure

        /**
         * <code>
         * function FOL-FC-ASK(KB, alpha) returns a substitution or false
         *   inputs: KB, the knowledge base, a set of first order definite clauses
         *           alpha, the query, an atomic sentence
         * </code>
         */
        public InferenceResult ask(FOLKnowledgeBase KB, Sentence query)
        {
            // Assertions on the type of queries this Inference procedure
            // supports
            if (!(query is AtomicSentence))
            {
                throw new ArgumentException(
                        "Only Atomic Queries are supported.");
            }

            FCAskAnswerHandler ansHandler = new FCAskAnswerHandler();

            Literal alpha = new Literal((AtomicSentence)query);

            // local variables: new, the new sentences inferred on each iteration
            List<Literal> newSentences = new List<Literal>();

            // Ensure query is not already a know fact before
            // attempting forward chaining.
            List<Dictionary<Variable, Term>> answers = KB.fetch(alpha);
            if (answers.Count > 0)
            {
                ansHandler.addProofStep(new ProofStepFoChAlreadyAFact(alpha));
                ansHandler.setAnswers(answers);
                return ansHandler;
            }

            // repeat until new is empty
            do
            {

                // new <- {}
                newSentences.Clear();
                // for each rule in KB do
                // (p1 ^ ... ^ pn => q) <-STANDARDIZE-VARIABLES(rule)
                foreach (Clause impl in KB.getAllDefiniteClauseImplications())
                {
                    Clause impl2 = KB.standardizeApart(impl);
                    // for each theta such that SUBST(theta, p1 ^ ... ^ pn) =
                    // SUBST(theta, p'1 ^ ... ^ p'n)
                    // --- for some p'1,...,p'n in KB
                    foreach (Dictionary<Variable, Term> theta in KB.fetch(invert(new List<Literal>(impl2
                            .getNegativeLiterals()))))
                    {
                        // q' <- SUBST(theta, q)
                        Literal qPrime = KB.subst(theta, impl.getPositiveLiterals()
                                [0]);
                        // if q' does not unify with some sentence already in KB or
                        // new then do
                        if (!KB.isRenaming(qPrime)
                                && !KB.isRenaming(qPrime, newSentences))
                        {
                            // add q' to new
                            newSentences.Add(qPrime);
                            ansHandler.addProofStep(impl, qPrime, theta);
                            // theta <- UNIFY(q', alpha)
                            Dictionary<Variable, Term> theta2 = KB.unify(qPrime.getAtomicSentence(), alpha
                                    .getAtomicSentence());
                            // if theta is not fail then return theta
                            if (null != theta2)
                            {
                                foreach (Literal l in newSentences)
                                {
                                    Sentence s = null;
                                    if (l.isPositiveLiteral())
                                    {
                                        s = l.getAtomicSentence();
                                    }
                                    else
                                    {
                                        s = new NotSentence(l.getAtomicSentence());
                                    }
                                    KB.tell(s);
                                }
                                ansHandler.setAnswers(KB.fetch(alpha));
                                return ansHandler;
                            }
                        }
                    }
                }
                // add new to KB
                foreach (Literal l in newSentences)
                {
                    Sentence s = null;
                    if (l.isPositiveLiteral())
                    {
                        s = l.getAtomicSentence();
                    }
                    else
                    {
                        s = new NotSentence(l.getAtomicSentence());
                    }
                    KB.tell(s);
                }
            } while (newSentences.Count > 0);

            // return false
            return ansHandler;
        }
        //
        // START-InferenceProcedure
        public InferenceResult ask(FOLKnowledgeBase KB, Sentence alpha) {
		List<Clause> sos = new List<Clause>();
		List<Clause> usable = new List<Clause>();

		// Usable set will be the set of clauses in the KB,
		// are assuming this is satisfiable as using the
		// Set of Support strategy.
		foreach (Clause c in KB.getAllClauses()) {
			Clause c2 = KB.standardizeApart(c);
			c2.setStandardizedApartCheckNotRequired();
			usable.AddRange(c2.getFactors());
		}

		// Ensure reflexivity axiom is added to usable if using paramodulation.
		if (isUseParamodulation()) {
			// Reflexivity Axiom: x = x
			TermEquality reflexivityAxiom = new TermEquality(new Variable("x"),
					new Variable("x"));
			Clause reflexivityClause = new Clause();
			reflexivityClause.addLiteral(new Literal(reflexivityAxiom));
			reflexivityClause = KB.standardizeApart(reflexivityClause);
			reflexivityClause.setStandardizedApartCheckNotRequired();
			usable.Add(reflexivityClause);
		}

		Sentence notAlpha = new NotSentence(alpha);
		// Want to use an answer literal to pull
		// query variables where necessary
		Literal answerLiteral = KB.createAnswerLiteral(notAlpha);
		List<Variable> answerLiteralVariables = KB
				.collectAllVariables(answerLiteral.getAtomicSentence());
		Clause answerClause = new Clause();

		if (answerLiteralVariables.Count > 0) {
			Sentence notAlphaWithAnswer = new ConnectedSentence(Connectors.OR,
					notAlpha, answerLiteral.getAtomicSentence());
			foreach (Clause c in KB.convertToClauses(notAlphaWithAnswer)) {
			    Clause c2 = KB.standardizeApart(c);
				c2.setProofStep(new ProofStepGoal(c2));
				c2.setStandardizedApartCheckNotRequired();
				sos.AddRange(c2.getFactors());
			}

			answerClause.addLiteral(answerLiteral);
		} else {
			foreach (Clause c in KB.convertToClauses(notAlpha)) {
				Clause c2 = KB.standardizeApart(c);
				c2.setProofStep(new ProofStepGoal(c2));
				c2.setStandardizedApartCheckNotRequired();
				sos.AddRange(c2.getFactors());
			}
		}

		// Ensure all subsumed clauses are removed
        foreach (Clause c in SubsumptionElimination.findSubsumedClauses(usable))
        {
            usable.Remove(c);
        }
        foreach (Clause c in SubsumptionElimination.findSubsumedClauses(sos))
        {
            sos.Remove(c);
        }

		OTTERAnswerHandler ansHandler = new OTTERAnswerHandler(answerLiteral,
				answerLiteralVariables, answerClause, maxQueryTime);

		IndexedClauses idxdClauses = new IndexedClauses(
				getLightestClauseHeuristic(), sos, usable);

		return otter(ansHandler, idxdClauses, sos, usable);
	}
        //
        // START-InferenceProcedure
        public InferenceResult ask(FOLKnowledgeBase KB, Sentence alpha)
        {

            // clauses <- the set of clauses in CNF representation of KB ^ ~alpha
            List<Clause> clauses = new List<Clause>();
            foreach (Clause c in KB.getAllClauses())
            {
                Clause c2 = KB.standardizeApart(c);
                c2.setStandardizedApartCheckNotRequired();
                clauses.AddRange(c2.getFactors());
            }
            Sentence notAlpha = new NotSentence(alpha);
            // Want to use an answer literal to pull
            // query variables where necessary
            Literal answerLiteral = KB.createAnswerLiteral(notAlpha);
            List<Variable> answerLiteralVariables = KB
                    .collectAllVariables(answerLiteral.getAtomicSentence());
            Clause answerClause = new Clause();

            if (answerLiteralVariables.Count > 0)
            {
                Sentence notAlphaWithAnswer = new ConnectedSentence(Connectors.OR,
                        notAlpha, answerLiteral.getAtomicSentence());
                foreach (Clause c in KB.convertToClauses(notAlphaWithAnswer))
                {
                    Clause c2 = KB.standardizeApart(c);
                    c2.setProofStep(new ProofStepGoal(c2));
                    c2.setStandardizedApartCheckNotRequired();
                    clauses.AddRange(c2.getFactors());
                }

                answerClause.addLiteral(answerLiteral);
            }
            else
            {
                foreach (Clause c in KB.convertToClauses(notAlpha))
                {
                    Clause c2 = KB.standardizeApart(c);
                    c2.setProofStep(new ProofStepGoal(c2));
                    c2.setStandardizedApartCheckNotRequired();
                    clauses.AddRange(c2.getFactors());
                }
            }

            TFMAnswerHandler ansHandler = new TFMAnswerHandler(answerLiteral,
                    answerLiteralVariables, answerClause, maxQueryTime);

            // new <- {}
            List<Clause> newClauses = new List<Clause>();
            List<Clause> toAdd = new List<Clause>();
            // loop do
            int noOfPrevClauses = clauses.Count;
            do
            {
                if (null != tracer)
                {
                    tracer.stepStartWhile(clauses, clauses.Count, newClauses
                            .Count);
                }

                newClauses.Clear();

                // for each Ci, Cj in clauses do
                Clause[] clausesA = new Clause[clauses.Count];
                clausesA = clauses.ToArray();
                // Basically, using the simple T)wo F)inger M)ethod here.
                for (int i = 0; i < clausesA.Length; i++)
                {
                    Clause cI = clausesA[i];
                    if (null != tracer)
                    {
                        tracer.stepOuterFor(cI);
                    }
                    for (int j = i; j < clausesA.Length; j++)
                    {
                        Clause cJ = clausesA[j];

                        if (null != tracer)
                        {
                            tracer.stepInnerFor(cI, cJ);
                        }

                        // resolvent <- FOL-RESOLVE(Ci, Cj)
                        List<Clause> resolvents = cI.binaryResolvents(cJ);

                        if (resolvents.Count > 0)
                        {
                            toAdd.Clear();
                            // new <- new <UNION> resolvent
                            foreach (Clause rc in resolvents)
                            {
                                toAdd.AddRange(rc.getFactors());
                            }

                            if (null != tracer)
                            {
                                tracer.stepResolved(cI, cJ, toAdd);
                            }

                            ansHandler.checkForPossibleAnswers(toAdd);

                            if (ansHandler.isComplete())
                            {
                                break;
                            }

                            newClauses.AddRange(toAdd);
                        }

                        if (ansHandler.isComplete())
                        {
                            break;
                        }
                    }
                    if (ansHandler.isComplete())
                    {
                        break;
                    }
                }

                noOfPrevClauses = clauses.Count;

                // clauses <- clauses <UNION> new
                clauses.AddRange(newClauses);

                if (ansHandler.isComplete())
                {
                    break;
                }

                // if new is a <SUBSET> of clauses then finished
                // searching for an answer
                // (i.e. when they were added the # clauses
                // did not increase).
            } while (noOfPrevClauses < clauses.Count);

            if (null != tracer)
            {
                tracer.stepFinished(clauses, ansHandler);
            }

            return ansHandler;
        }