Beispiel #1
0
        /// <summary>
        /// Train one fold.
        /// </summary>
        /// <param name="k">The fold id.</param>
        /// <param name="fold">The fold.</param>
        public void TrainFold(int k, CrossValidateFold fold)
        {
            int    noImprove = 0;
            double localBest = 0;

            // Get the training and cross validation sets.
            IList <BasicData> training   = fold.TrainingSet;
            IList <BasicData> validation = fold.ValidationSet;

            // Create random particles for the RBF.
            IGenerateRandom rnd       = new MersenneTwisterGenerateRandom();
            var             particles = new RBFNetwork[TitanicConfig.ParticleCount];

            for (int i = 0; i < particles.Length; i++)
            {
                particles[i] = new RBFNetwork(TitanicConfig.InputFeatureCount, TitanicConfig.RbfCount, 1);
                particles[i].Reset(rnd);
            }

            /**
             * Construct a network to hold the best network.
             */
            if (_bestNetwork == null)
            {
                _bestNetwork = new RBFNetwork(TitanicConfig.InputFeatureCount, TitanicConfig.RbfCount, 1);
            }

            /**
             * Setup the scoring function.
             */
            IScoreFunction score         = new ScoreTitanic(training);
            IScoreFunction scoreValidate = new ScoreTitanic(validation);

            /**
             * Setup particle swarm.
             */
            bool done            = false;
            var  train           = new TrainPSO(particles, score);
            int  iterationNumber = 0;
            var  line            = new StringBuilder();

            do
            {
                iterationNumber++;

                train.Iteration();

                var best = (RBFNetwork)train.BestParticle;

                double trainingScore   = train.LastError;
                double validationScore = scoreValidate.CalculateScore(best);

                if (validationScore > _bestScore)
                {
                    Array.Copy(best.LongTermMemory, 0, _bestNetwork.LongTermMemory, 0, best.LongTermMemory.Length);
                    _bestScore = validationScore;
                }

                if (validationScore > localBest)
                {
                    noImprove = 0;
                    localBest = validationScore;
                }
                else
                {
                    noImprove++;
                }

                line.Length = 0;
                line.Append("Fold #");
                line.Append(k + 1);
                line.Append(", Iteration #");
                line.Append(iterationNumber);
                line.Append(": training correct: ");
                line.Append(trainingScore);
                line.Append(", validation correct: ");
                line.Append(validationScore);
                line.Append(", no improvement: ");
                line.Append(noImprove);

                if (noImprove > TitanicConfig.AllowNoImprovement)
                {
                    done = true;
                }

                Console.WriteLine(line.ToString());
            } while (!done);

            fold.Score = localBest;
        }
Beispiel #2
0
        /// <summary>
        /// Train one fold.
        /// </summary>
        /// <param name="k">The fold id.</param>
        /// <param name="fold">The fold.</param>
        public void TrainFold(int k, CrossValidateFold fold)
        {
            int noImprove = 0;
            double localBest = 0;

            // Get the training and cross validation sets.
            IList<BasicData> training = fold.TrainingSet;
            IList<BasicData> validation = fold.ValidationSet;

            // Create random particles for the RBF.
            IGenerateRandom rnd = new MersenneTwisterGenerateRandom();
            var particles = new RBFNetwork[TitanicConfig.ParticleCount];
            for (int i = 0; i < particles.Length; i++)
            {
                particles[i] = new RBFNetwork(TitanicConfig.InputFeatureCount, TitanicConfig.RbfCount, 1);
                particles[i].Reset(rnd);
            }

            /**
             * Construct a network to hold the best network.
             */
            if (_bestNetwork == null)
            {
                _bestNetwork = new RBFNetwork(TitanicConfig.InputFeatureCount, TitanicConfig.RbfCount, 1);
            }

            /**
             * Setup the scoring function.
             */
            IScoreFunction score = new ScoreTitanic(training);
            IScoreFunction scoreValidate = new ScoreTitanic(validation);

            /**
             * Setup particle swarm.
             */
            bool done = false;
            var train = new TrainPSO(particles, score);
            int iterationNumber = 0;
            var line = new StringBuilder();

            do
            {
                iterationNumber++;

                train.Iteration();

                var best = (RBFNetwork) train.BestParticle;

                double trainingScore = train.LastError;
                double validationScore = scoreValidate.CalculateScore(best);

                if (validationScore > _bestScore)
                {
                    Array.Copy(best.LongTermMemory, 0, _bestNetwork.LongTermMemory, 0, best.LongTermMemory.Length);
                    _bestScore = validationScore;
                }

                if (validationScore > localBest)
                {
                    noImprove = 0;
                    localBest = validationScore;
                }
                else
                {
                    noImprove++;
                }

                line.Length = 0;
                line.Append("Fold #");
                line.Append(k + 1);
                line.Append(", Iteration #");
                line.Append(iterationNumber);
                line.Append(": training correct: ");
                line.Append(trainingScore);
                line.Append(", validation correct: ");
                line.Append(validationScore);
                line.Append(", no improvement: ");
                line.Append(noImprove);

                if (noImprove > TitanicConfig.AllowNoImprovement)
                {
                    done = true;
                }

                Console.WriteLine(line.ToString());
            } while (!done);

            fold.Score = localBest;
        }