public void SelectParents(IEnumerable <Genotype> pop, out Genotype parent1, out Genotype parent2)
        {
            parent1 = SelectParent(pop);
            var p1Tmp = parent1;

            parent2 = SelectParent(pop.Where(x => x != p1Tmp));
        }
Beispiel #2
0
        public void SetGenotype(Genotype g)
        {
            m_Genotype = g;
            body.transform.localScale = new Vector3(g.bodySizeX, g.bodySizeY, 1);
            fin.transform.localScale  = new Vector3(g.finSizeX, g.finSizeY, 1);
            var motor = joint.motor;

            motor.motorSpeed = g.motorForce;
            joint.motor      = motor;
        }
        public void SetGenotype(Genotype g)
        {
            this.genotype = g;

            // ... use genotype to set parameters
            body.transform.localScale = new Vector3(g.bodySizeX, g.bodySizeY, 1);

            fin.transform.localScale = new Vector3(g.finSizeX, g.finSizeY, 1);

            var motor = joint.motor;

            motor.motorSpeed = g.motorForce;
            joint.motor      = motor;
        }
Beispiel #4
0
        private void Start()
        {
            // Create initial population
            List <Genotype> initialGenotypes = new List <Genotype>();

            for (int i = 0; i < populationSize; i++)
            {
                Genotype g = new Genotype();

                g.bodySizeX = Random.Range(1, 10);
                g.bodySizeY = Random.Range(1, 10);

                g.finSizeX = Random.Range(1, 10);
                g.finSizeY = Random.Range(1, 10);

                g.motorForce = Random.Range(0, 5000);

                initialGenotypes.Add(g);
            }

            StartCoroutine(GeneticCO(initialGenotypes));
        }
Beispiel #5
0
        IEnumerator GeneticCO(List <Genotype> initialGenotypes)
        {
            List <Genotype> currentGenotypes = initialGenotypes;

            // Do N generations
            for (int i = 0; i < nGenerations; i++)
            {
                // Spawn fishs
                fishSpawner.SpawnPopulation(currentGenotypes);

                // ... wait for simulation
                yield return(new WaitForSeconds(3.0f));

                fishSpawner.EndSimulation();

                // Selection
                currentGenotypes.Sort((x, y) => (int)((y.fitness - x.fitness) * 100));

                List <Genotype> selectedGenotypes = currentGenotypes.GetRange(0, (int)(0.3f * populationSize));

                // Crossover
                List <Genotype> crossoverGenotypes = new List <Genotype>();
                for (int ci = 0; ci < selectedGenotypes.Count / 2; ci++)
                {
                    Genotype p1 = selectedGenotypes[ci * 2];
                    Genotype p2 = selectedGenotypes[ci * 2 + 1];

                    Genotype c1 = new Genotype();
                    c1.bodySizeX = Random.value > 0.5f ? p1.bodySizeX : p2.bodySizeX;
                    c1.bodySizeY = Random.value > 0.5f ? p1.bodySizeY : p2.bodySizeY;

                    c1.finSizeX = Random.value > 0.5f ? p1.finSizeX : p2.finSizeX;
                    c1.finSizeY = Random.value > 0.5f ? p1.finSizeY : p2.finSizeY;

                    c1.motorForce = Random.value > 0.5f ? p1.motorForce : p2.motorForce;

                    Genotype c2 = new Genotype();
                    c2.bodySizeX = Random.value > 0.5f ? p1.bodySizeX : p2.bodySizeX;
                    c2.bodySizeY = Random.value > 0.5f ? p1.bodySizeY : p2.bodySizeY;

                    c2.finSizeX = Random.value > 0.5f ? p1.finSizeX : p2.finSizeX;
                    c2.finSizeY = Random.value > 0.5f ? p1.finSizeY : p2.finSizeY;

                    c2.motorForce = Random.value > 0.5f ? p1.motorForce : p2.motorForce;

                    crossoverGenotypes.Add(c1);
                    crossoverGenotypes.Add(c2);
                }

                List <Genotype> mutatedGenotypes = new List <Genotype>();
                int             nMutated         = populationSize - selectedGenotypes.Count - crossoverGenotypes.Count;
                for (int mi = 0; mi < nMutated; mi++)
                {
                    Genotype p = crossoverGenotypes[Random.Range(0, crossoverGenotypes.Count)];

                    Genotype m = new Genotype();
                    m.bodySizeX = p.bodySizeX;
                    m.bodySizeY = p.bodySizeY;

                    m.finSizeX = p.finSizeX;
                    m.finSizeY = p.finSizeY;

                    m.motorForce = p.motorForce;

                    int choice = Random.Range(0, 5);
                    switch (choice)
                    {
                    case 0:
                        m.bodySizeX = Random.Range(1, 10);
                        break;

                    case 1:
                        m.bodySizeY = Random.Range(1, 10);
                        break;

                    case 2:
                        m.finSizeX = Random.Range(1, 10);
                        break;

                    case 3:
                        m.finSizeY = Random.Range(1, 10);
                        break;

                    case 4:
                        m.motorForce = Random.Range(0, 5000);
                        break;
                    }

                    mutatedGenotypes.Add(m);
                }

                currentGenotypes = new List <Genotype>();
                currentGenotypes.AddRange(selectedGenotypes);
                currentGenotypes.AddRange(crossoverGenotypes);
                currentGenotypes.AddRange(mutatedGenotypes);

                Debug.Log("Generation " + i + " - Best Fitness: " + selectedGenotypes[0].fitness + " - Second best Fitness: " + selectedGenotypes[1].fitness);

                SetBestIndividualMarker(selectedGenotypes[0].fitness);
            }
        }
Beispiel #6
0
        IEnumerator GeneticCO(List <Genotype> initialGenotypes)
        {
            List <Genotype> currentGenotypes = initialGenotypes;

            for (int i = 0; i < nGenerations; i++)
            {
                fishSpawner.SpawnPopulation(currentGenotypes);

                yield return(new WaitForSeconds(generationLT));

                fishSpawner.EndSimulation();

                // Selection
                currentGenotypes.Sort((x, y) => (int)(100 * y.fitness - 100 * x.fitness));
                List <Genotype> selectedGenotypes = currentGenotypes.GetRange(0, (int)(0.3f * populationSize));

                // crossover
                List <Genotype> crossoverGenotypes = new List <Genotype>();
                for (int ci = 0; ci < selectedGenotypes.Count / 2; ci++)
                {
                    Genotype p1 = selectedGenotypes[ci * 2];
                    Genotype p2 = selectedGenotypes[(ci * 2) + 1];

                    Genotype c1 = new Genotype();
                    c1.bodySizeX  = Random.value > 0.5 ? p1.bodySizeX : p2.bodySizeX;
                    c1.bodySizeY  = Random.value > 0.5 ? p1.bodySizeY : p2.bodySizeY;
                    c1.finSizeX   = Random.value > 0.5 ? p1.finSizeX : p2.finSizeX;
                    c1.finSizeY   = Random.value > 0.5 ? p1.finSizeY : p2.finSizeY;
                    c1.motorForce = Random.value > 0.5 ? p1.motorForce : p2.motorForce;

                    Genotype c2 = new Genotype();
                    c2.bodySizeX  = Random.value > 0.5 ? p1.bodySizeX : p2.bodySizeX;
                    c2.bodySizeY  = Random.value > 0.5 ? p1.bodySizeY : p2.bodySizeY;
                    c2.finSizeX   = Random.value > 0.5 ? p1.finSizeX : p2.finSizeX;
                    c2.finSizeY   = Random.value > 0.5 ? p1.finSizeY : p2.finSizeY;
                    c2.motorForce = Random.value > 0.5 ? p1.motorForce : p2.motorForce;

                    crossoverGenotypes.Add(c1);
                    crossoverGenotypes.Add(c2);
                }

                // mutation
                List <Genotype> mutatedGenotypes = new List <Genotype>();
                int             nMutated         = populationSize - selectedGenotypes.Count - crossoverGenotypes.Count;
                for (int mi = 0; mi < nMutated; mi++)
                {
                    Genotype p = crossoverGenotypes[Random.Range(0, crossoverGenotypes.Count)];

                    Genotype m = new Genotype();
                    m.bodySizeX  = p.bodySizeX;
                    m.bodySizeY  = p.bodySizeY;
                    m.finSizeX   = p.finSizeX;
                    m.finSizeY   = p.finSizeY;
                    m.motorForce = p.motorForce;

                    int choice = Random.Range(0, 5);
                    switch (choice)
                    {
                    case 0:
                        m.bodySizeX = Random.Range(1, 20);
                        break;

                    case 1:
                        m.bodySizeY = Random.Range(1, 20);
                        break;

                    case 2:
                        m.finSizeX = Random.Range(1, 20);
                        break;

                    case 3:
                        m.finSizeY = Random.Range(1, 20);
                        break;

                    case 4:
                        m.motorForce = Random.Range(0, 5000);
                        break;

                    default:
                        break;
                    }

                    mutatedGenotypes.Add(m);
                }

                currentGenotypes = new List <Genotype>();
                currentGenotypes.AddRange(selectedGenotypes);
                currentGenotypes.AddRange(crossoverGenotypes);
                currentGenotypes.AddRange(mutatedGenotypes);

                Debug.Log("Generation " + i + " best fitness = " + selectedGenotypes[0].fitness);
            }
        }