Beispiel #1
0
        /// <summary>
        /// Run the Inverse DCT method on all of the block data
        /// </summary>
        public void IdctData()
        {
            foreach (float[][][] t in scanData)
            {
                for (int v = 0; v < factorV; v++)
                {
                    for (int h = 0; h < factorH; h++)
                    {
                        float[] toDecode = t[h][v];
                        ZigZag.UnZigZag(toDecode, unZZ);
                        byte[][] decoded = scanDecodedBufferPool.GetNext();
                        switch (JpegConstants.SelectedIdct)
                        {
                        case IdctImplementation.Naive:
                            dct.DoIDCT_Naive(unZZ, decoded);
                            break;

                        case IdctImplementation.AAN:
                            dct.DoIDCT_AAN(unZZ, quantizationTable, decoded);
                            break;

                        case IdctImplementation.NVidia:
                            dct.DoIDCT_NVidia(unZZ, decoded);
                            break;
                        }
                        scanDecoded.Add(decoded);
                    }
                }
            }
        }
 public void idctData()
 {
     float[] array = new float[64];
     for (int i = 0; i < scanData.Count; i++)
     {
         for (int j = 0; j < factorV; j++)
         {
             for (int k = 0; k < factorH; k++)
             {
                 ZigZag.UnZigZag(scanData[i][k, j], array);
                 scanDecoded.Add(_dct.FastIDCT(array));
             }
         }
     }
 }
Beispiel #3
0
 public void idctData()
 {
     float[] output = new float[0x40];
     float[] input  = null;
     for (int i = 0; i < this.scanData.Count; i++)
     {
         for (int j = 0; j < this.factorV; j++)
         {
             for (int k = 0; k < this.factorH; k++)
             {
                 input = this.scanData[i][k, j];
                 ZigZag.UnZigZag(input, output);
                 this.scanDecoded.Add(this._dct.FastIDCT(output));
             }
         }
     }
 }
        /// <summary>
        /// Run the Inverse DCT method on all of the block data
        /// </summary>
        public void idctData()
        {
            float[] unZZ     = new float[64];
            float[] toDecode = null;

            for (int i = 0; i < scanData.Count; i++)
            {
                for (int v = 0; v < factorV; v++)
                {
                    for (int h = 0; h < factorH; h++)
                    {
                        toDecode = scanData[i][h, v];
                        ZigZag.UnZigZag(toDecode, unZZ);
                        //FJCore.Profiling.IDCTWatch.Start();
                        scanDecoded.Add(_dct.FastIDCT(unZZ));
                        //FJCore.Profiling.IDCTWatch.Stop();
                    }
                }
            }
        }
Beispiel #5
0
        public DecodedJpeg Decode()
        {
            // The frames in this jpeg are loaded into a list. There is
            // usually just one frame except in heirarchial progression where
            // there are multiple frames.
            JpegFrame frame = null;

            // The restart interval defines how many MCU's we should have
            // between the 8-modulo restart marker. The restart markers allow
            // us to tell whether or not our decoding process is working
            // correctly, also if there is corruption in the image we can
            // recover with these restart intervals. (See RSTm DRI).
            int resetInterval = 0;

            bool haveMarker = false;
            bool foundJFIF  = false;

            List <JpegHeader> headers = new List <JpegHeader>();

            // Loop through until there are no more markers to read in, at
            // that point everything is loaded into the jpegFrames array and
            // can be processed.
            while (true)
            {
                #region Switch over marker types
                switch (marker)
                {
                case JpegMarker.APP0:
                // APP1 is used for EXIF data
                case JpegMarker.APP1:
                // Seldomly, APP2 gets used for extended EXIF, too
                case JpegMarker.APP2:
                case JpegMarker.APP3:
                case JpegMarker.APP4:
                case JpegMarker.APP5:
                case JpegMarker.APP6:
                case JpegMarker.APP7:
                case JpegMarker.APP8:
                case JpegMarker.APP9:
                case JpegMarker.APP10:
                case JpegMarker.APP11:
                case JpegMarker.APP12:
                case JpegMarker.APP13:
                case JpegMarker.APP14:
                case JpegMarker.APP15:
                // COM: Comment
                case JpegMarker.COM:

                    // Debug.WriteLine(string.Format("Extracting Header, Type={0:X}", marker));

                    JpegHeader header = ExtractHeader();

                    #region Check explicitly for Exif Data

                    if (header.Marker == JpegMarker.APP1 && header.Data.Length >= 6)
                    {
                        byte[] d = header.Data;

                        if (d[0] == 'E' &&
                            d[1] == 'x' &&
                            d[2] == 'i' &&
                            d[3] == 'f' &&
                            d[4] == 0 &&
                            d[5] == 0)
                        {
                            // Exif.  Do something?
                        }
                    }

                    #endregion

                    #region Check for Adobe header

                    if (header.Data.Length >= 5 && header.Marker == JpegMarker.APP14)
                    {
                        string asText = UTF8Encoding.UTF8.GetString(header.Data, 0, 5);
                        if (asText == "Adobe")
                        {
                            // ADOBE HEADER.  Do anything?
                        }
                    }

                    #endregion

                    headers.Add(header);

                    if (!foundJFIF && marker == JpegMarker.APP0)
                    {
                        foundJFIF = TryParseJFIF(header.Data);

                        if (foundJFIF)     // Found JFIF... do JFIF extensions follow?
                        {
                            header.IsJFIF = true;
                            var status = jpegReader.GetNextMarker();
                            if (status.Status == Status.MarkerFound)
                            {
                                // Yes, they do.
                                marker = status.Result;
                                if (marker == JpegMarker.APP0)
                                {
                                    header = ExtractHeader();
                                    headers.Add(header);
                                }
                                else     // No.  Delay processing this one.
                                {
                                    haveMarker = true;
                                }
                            }
                            else
                            {
                                // ks: This is a legitimate exception, since it indicates that something anomalous has happened.
                                throw new System.IO.EndOfStreamException();
                            }
                        }
                    }

                    break;

                case JpegMarker.SOF0:
                case JpegMarker.SOF2:

                    // SOFn Start of Frame Marker, Baseline DCT - This is the start
                    // of the frame header that defines certain variables that will
                    // be carried out through the rest of the encoding. Multiple
                    // frames are used in a hierarchical system, however most JPEG's
                    // only contain a single frame.

                    // Progressive or baseline?
                    progressive = marker == JpegMarker.SOF2;

                    jpegFrames.Add(new JpegFrame());
                    frame = (JpegFrame)jpegFrames[jpegFrames.Count - 1];

                    // Skip the frame length.
                    jpegReader.ReadShort();
                    // Bits percision, either 8 or 12.
                    frame.Precision = jpegReader.ReadByte().Result;
                    // Scan lines (height)
                    frame.ScanLines = jpegReader.ReadShort();
                    // Scan samples per line (width)
                    frame.SamplesPerLine = jpegReader.ReadShort();
                    // Number of Color Components (channels).
                    frame.ComponentCount = jpegReader.ReadByte().Result;

                    // Add all of the necessary components to the frame.
                    for (int i = 0; i < frame.ComponentCount; i++)
                    {
                        byte compId        = jpegReader.ReadByte().Result;
                        byte sampleFactors = jpegReader.ReadByte().Result;
                        byte qTableId      = jpegReader.ReadByte().Result;

                        byte sampleHFactor = (byte)(sampleFactors >> 4);
                        byte sampleVFactor = (byte)(sampleFactors & 0x0f);

                        frame.AddComponent(compId, sampleHFactor, sampleVFactor, qTableId);
                    }
                    break;

                case JpegMarker.DHT:

                    // DHT non-SOF Marker - Huffman Table is required for decoding
                    // the JPEG stream, when we receive a marker we load in first
                    // the table length (16 bits), the table class (4 bits), table
                    // identifier (4 bits), then we load in 16 bytes and each byte
                    // represents the count of bytes to load in for each of the 16
                    // bytes. We load this into an array to use later and move on.
                    // Only 4 huffman tables can be used in an image.
                    int huffmanLength = (jpegReader.ReadShort() - 2);

                    // Keep looping until we are out of length.
                    int index = huffmanLength;

                    // Multiple tables may be defined within a DHT marker. This
                    // will keep reading until there are no tables left, most
                    // of the time there is just one table.
                    while (index > 0)
                    {
                        // Read the identifier information and class
                        // information about the Huffman table, then read the
                        // 16 byte codelength in and read in the Huffman values
                        // and put it into table info.
                        byte    huffmanInfo  = jpegReader.ReadByte().Result;
                        byte    tableClass   = (byte)(huffmanInfo >> 4);
                        byte    huffmanIndex = (byte)(huffmanInfo & 0x0f);
                        short[] codeLength   = new short[16];

                        for (int i = 0; i < codeLength.Length; i++)
                        {
                            codeLength[i] = jpegReader.ReadByte().Result;
                        }

                        int huffmanValueLen = 0;
                        for (int i = 0; i < 16; i++)
                        {
                            huffmanValueLen += codeLength[i];
                        }
                        index -= (huffmanValueLen + 17);

                        short[] huffmanVal = new short[huffmanValueLen];
                        for (int i = 0; i < huffmanVal.Length; i++)
                        {
                            huffmanVal[i] = jpegReader.ReadByte().Result;
                        }
                        // Assign DC Huffman Table.
                        if (tableClass == HuffmanTable.JPEG_DC_TABLE)
                        {
                            dcTables[(int)huffmanIndex] = new JpegHuffmanTable(codeLength, huffmanVal);
                        }

                        // Assign AC Huffman Table.
                        else if (tableClass == HuffmanTable.JPEG_AC_TABLE)
                        {
                            acTables[(int)huffmanIndex] = new JpegHuffmanTable(codeLength, huffmanVal);
                        }
                    }
                    break;

                case JpegMarker.DQT:

                    // DQT non-SOF Marker - This defines the quantization
                    // coeffecients, this allows us to figure out the quality of
                    // compression and unencode the data. The data is loaded and
                    // then stored in to an array.
                    short quantizationLength = (short)(jpegReader.ReadShort() - 2);
                    for (int j = 0; j < quantizationLength / 65; j++)
                    {
                        byte  quantSpecs = jpegReader.ReadByte().Result;
                        int[] quantData  = new int[64];
                        if ((byte)(quantSpecs >> 4) == 0)
                        // Precision 8 bit.
                        {
                            for (int i = 0; i < 64; i++)
                            {
                                quantData[i] = jpegReader.ReadByte().Result;
                            }
                        }
                        else if ((byte)(quantSpecs >> 4) == 1)
                        // Precision 16 bit.
                        {
                            for (int i = 0; i < 64; i++)
                            {
                                quantData[i] = jpegReader.ReadShort();
                            }
                        }

                        // The quantData comes out of the JPEG image in zig-zag format, and if the quantization step takes place before
                        // the IDCT/unzigzag step, the quantization tables should remain in zig-zag format.  However, if the
                        // quantization takes place during the IDCT (as in the AAN IDCT implementation), the quantization tables
                        // need to be unzigzagged back to normal order.
                        if (JpegConstants.SelectedIdct != IdctImplementation.AAN)
                        {
                            qTables[(int)(quantSpecs & 0x0f)] = new JpegQuantizationTable(quantData);
                        }
                        else
                        {
                            int[] zzQuantData = new int[64];
                            ZigZag.UnZigZag <int>(quantData, zzQuantData);
                            qTables[(int)(quantSpecs & 0x0f)] = new JpegQuantizationTable(zzQuantData);
                        }
                    }
                    break;

                case JpegMarker.SOS:

                    // Debug.WriteLine("Start of Scan (SOS)");

                    // SOS non-SOF Marker - Start Of Scan Marker, this is where the
                    // actual data is stored in a interlaced or non-interlaced with
                    // from 1-4 components of color data, if three components most
                    // likely a YCrCb model, this is a fairly complex process.

                    // Read in the scan length.
                    ushort scanLen = jpegReader.ReadShort();
                    // Number of components in the scan.
                    byte   numberOfComponents = jpegReader.ReadByte().Result;
                    byte[] componentSelector  = new byte[numberOfComponents];

                    for (int i = 0; i < numberOfComponents; i++)
                    {
                        // Component ID, packed byte containing the Id for the
                        // AC table and DC table.
                        byte componentID = jpegReader.ReadByte().Result;
                        byte tableInfo   = jpegReader.ReadByte().Result;

                        int DC = (tableInfo >> 4) & 0x0f;
                        int AC = (tableInfo) & 0x0f;

                        frame.SetHuffmanTables(componentID,
                                               acTables[(byte)AC],
                                               dcTables[(byte)DC]);

                        componentSelector[i] = componentID;
                    }

                    byte startSpectralSelection  = jpegReader.ReadByte().Result;
                    byte endSpectralSelection    = jpegReader.ReadByte().Result;
                    byte successiveApproximation = jpegReader.ReadByte().Result;

                    #region Baseline JPEG Scan Decoding

                    if (!progressive)
                    {
                        frame.DecodeScanBaseline(numberOfComponents, componentSelector, resetInterval, jpegReader, ref marker);
                        haveMarker = true;     // use resultant marker for the next switch(..)
                    }

                    #endregion

                    #region Progressive JPEG Scan Decoding

                    if (progressive)
                    {
                        frame.DecodeScanProgressive(
                            successiveApproximation, startSpectralSelection, endSpectralSelection,
                            numberOfComponents, componentSelector, resetInterval, jpegReader, ref marker);

                        haveMarker = true;     // use resultant marker for the next switch(..)
                    }

                    #endregion

                    break;


                case JpegMarker.DRI:
                    jpegReader.BaseStream.Seek(2, System.IO.SeekOrigin.Current);
                    resetInterval = jpegReader.ReadShort();
                    break;

                /// Defines the number of lines.  (Not usually present)
                case JpegMarker.DNL:

                    frame.ScanLines = jpegReader.ReadShort();
                    break;

                /// End of Image.  Finish the decode.
                case JpegMarker.EOI:

                    if (jpegFrames.Count == 0)
                    {
                        throw new NotSupportedException("No JPEG frames could be located.");
                    }
                    else if (jpegFrames.Count == 1)
                    {
                        // Only one frame, JPEG Non-Hierarchical Frame.
                        byte[][][] raster = Image.CreateRasterBuffer(frame.Width, frame.Height, frame.ComponentCount);

                        IList <JpegComponent> components = frame.Scan.Components;

                        int totalSteps = components.Count * 3;     // Three steps per loop

                        for (int i = 0; i < components.Count; i++)
                        {
                            JpegComponent comp = components[i];

                            comp.QuantizationTable = qTables[comp.quantId].Table;

                            // 1. Quantize
                            if (JpegConstants.SelectedIdct != IdctImplementation.AAN)
                            {
                                comp.QuantizeData();
                            }

                            // 2. Run iDCT (expensive)
                            comp.IdctData();

                            // 3. Scale the image and write the data to the raster.
                            comp.WriteDataScaled(raster, i, BlockUpsamplingMode);

                            // Ensure garbage collection.
                            comp = null; GC.Collect();
                        }

                        // Grayscale Color Image (1 Component).
                        if (frame.ComponentCount == 1)
                        {
                            ColorModel cm = new ColorModel()
                            {
                                ColorSpace = ColorSpace.Gray, Opaque = true
                            };
                            image = new Image(cm, raster);
                        }
                        // YCbCr Color Image (3 Components).
                        else if (frame.ComponentCount == 3)
                        {
                            ColorModel cm = new ColorModel()
                            {
                                ColorSpace = ColorSpace.YCbCr, Opaque = true
                            };
                            image = new Image(cm, raster);
                        }
                        // Possibly CMYK or RGBA ?
                        else
                        {
                            throw new NotSupportedException("Unsupported Color Mode: 4 Component Color Mode found.");
                        }

                        // If needed, convert centimeters to inches.
                        Func <double, double> conv = x =>
                                                     Units == UnitType.Inches ? x : x / 2.54;

                        image.DensityX = conv(XDensity);
                        image.DensityY = conv(YDensity);

                        height = frame.Height;
                        width  = frame.Width;
                    }
                    else
                    {
                        // JPEG Heirarchial Frame
                        throw new NotSupportedException("Unsupported Codec Type: Hierarchial JPEG");
                    }
                    break;

                // Only SOF0 (baseline) and SOF2 (progressive) are supported by FJCore
                case JpegMarker.SOF1:
                case JpegMarker.SOF3:
                case JpegMarker.SOF5:
                case JpegMarker.SOF6:
                case JpegMarker.SOF7:
                case JpegMarker.SOF9:
                case JpegMarker.SOF10:
                case JpegMarker.SOF11:
                case JpegMarker.SOF13:
                case JpegMarker.SOF14:
                case JpegMarker.SOF15:
                    throw new NotSupportedException("Unsupported codec type.");

                default: break;      // ignore
                }

                #endregion switch over markers

                if (haveMarker)
                {
                    haveMarker = false;
                }
                else
                {
                    var status = jpegReader.GetNextMarker();
                    if (status.Status == Status.EOF)
                    {
                        break; /* done reading the file */
                    }
                    else if (status.Status == Status.MarkerFound)
                    {
                        marker = status.Result;
                    }
                    else
                    {
                        // This should never happen.
                        throw new InvalidOperationException("No marker was found.");
                    }
                }
            }

            DecodedJpeg result = new DecodedJpeg(image, headers);

            return(result);
        }