public void CanSolveForRandomMatrix(int row, int col)
        {
            var matrixA     = new UserDefinedMatrix(Matrix <Complex32> .Build.RandomPositiveDefinite(row, 1).ToArray());
            var matrixACopy = matrixA.Clone();
            var chol        = matrixA.Cholesky();
            var matrixB     = new UserDefinedMatrix(Matrix <Complex32> .Build.Random(row, col, 1).ToArray());
            var matrixX     = chol.Solve(matrixB);

            Assert.AreEqual(matrixB.RowCount, matrixX.RowCount);
            Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);

            var matrixBReconstruct = matrixA * matrixX;

            // Check the reconstruction.
            for (var i = 0; i < matrixB.RowCount; i++)
            {
                for (var j = 0; j < matrixB.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixB[i, j].Real, matrixBReconstruct[i, j].Real, 0.02f);
                    Assert.AreEqual(matrixB[i, j].Imaginary, matrixBReconstruct[i, j].Imaginary, 0.02f);
                }
            }

            // Make sure A didn't change.
            for (var i = 0; i < matrixA.RowCount; i++)
            {
                for (var j = 0; j < matrixA.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixACopy[i, j], matrixA[i, j]);
                }
            }
        }
        public void CanFactorizeRandomMatrix(int order)
        {
            var matrixX = new UserDefinedMatrix(Matrix <Complex32> .Build.RandomPositiveDefinite(order, 1).ToArray());
            var chol    = matrixX.Cholesky();
            var factorC = chol.Factor;

            // Make sure the Cholesky factor has the right dimensions.
            Assert.AreEqual(order, factorC.RowCount);
            Assert.AreEqual(order, factorC.ColumnCount);

            // Make sure the Cholesky factor is lower triangular.
            for (var i = 0; i < factorC.RowCount; i++)
            {
                for (var j = i + 1; j < factorC.ColumnCount; j++)
                {
                    Assert.AreEqual(Complex32.Zero, factorC[i, j]);
                }
            }

            // Make sure the cholesky factor times it's transpose is the original matrix.
            var matrixXfromC = factorC * factorC.ConjugateTranspose();

            for (var i = 0; i < matrixXfromC.RowCount; i++)
            {
                for (var j = 0; j < matrixXfromC.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixX[i, j].Real, matrixXfromC[i, j].Real, 1e-3f);
                    Assert.AreEqual(matrixX[i, j].Imaginary, matrixXfromC[i, j].Imaginary, 1e-3f);
                }
            }
        }
        public void CanSolveForRandomVector(int order)
        {
            var matrixA     = new UserDefinedMatrix(Matrix <Complex32> .Build.RandomPositiveDefinite(order, 1).ToArray());
            var matrixACopy = matrixA.Clone();
            var chol        = matrixA.Cholesky();
            var b           = new UserDefinedVector(Vector <Complex32> .Build.Random(order, 1).ToArray());
            var x           = chol.Solve(b);

            Assert.AreEqual(b.Count, x.Count);

            var matrixBReconstruct = matrixA * x;

            // Check the reconstruction.
            for (var i = 0; i < order; i++)
            {
                Assert.AreEqual(b[i].Real, matrixBReconstruct[i].Real, 1e-2f);
                Assert.AreEqual(b[i].Imaginary, matrixBReconstruct[i].Imaginary, 1e-2f);
            }

            // Make sure A didn't change.
            for (var i = 0; i < matrixA.RowCount; i++)
            {
                for (var j = 0; j < matrixA.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixACopy[i, j], matrixA[i, j]);
                }
            }
        }
        public void CanFactorizeRandomMatrix(int order)
        {
            var matrixX = new UserDefinedMatrix(Matrix<float>.Build.RandomPositiveDefinite(order, 1).ToArray());
            var chol = matrixX.Cholesky();
            var factorC = chol.Factor;

            // Make sure the Cholesky factor has the right dimensions.
            Assert.AreEqual(order, factorC.RowCount);
            Assert.AreEqual(order, factorC.ColumnCount);

            // Make sure the Cholesky factor is lower triangular.
            for (var i = 0; i < factorC.RowCount; i++)
            {
                for (var j = i + 1; j < factorC.ColumnCount; j++)
                {
                    Assert.AreEqual(0.0, factorC[i, j]);
                }
            }

            // Make sure the cholesky factor times it's transpose is the original matrix.
            var matrixXfromC = factorC * factorC.Transpose();
            for (var i = 0; i < matrixXfromC.RowCount; i++)
            {
                for (var j = 0; j < matrixXfromC.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixX[i, j], matrixXfromC[i, j], 1e-3);
                }
            }
        }
Beispiel #5
0
        public void CanFactorizeRandomMatrix(int order)
        {
            var matrixX = new UserDefinedMatrix(Matrix <Complex32> .Build.RandomPositiveDefinite(order, 1).ToArray());
            var chol    = matrixX.Cholesky();
            var factorC = chol.Factor;

            // Make sure the Cholesky factor has the right dimensions.
            Assert.AreEqual(order, factorC.RowCount);
            Assert.AreEqual(order, factorC.ColumnCount);

            // Make sure the Cholesky factor is lower triangular.
            for (var i = 0; i < factorC.RowCount; i++)
            {
                for (var j = i + 1; j < factorC.ColumnCount; j++)
                {
                    Assert.AreEqual(Complex32.Zero, factorC[i, j]);
                }
            }

            // Make sure the cholesky factor times it's transpose is the original matrix.
            var matrixXfromC = factorC * factorC.ConjugateTranspose();

            for (var i = 0; i < matrixXfromC.RowCount; i++)
            {
                for (var j = 0; j < matrixXfromC.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixX[i, j].Real, matrixXfromC[i, j].Real, 1e-3f);
                    Assert.AreEqual(matrixX[i, j].Imaginary, matrixXfromC[i, j].Imaginary, 1e-3f);
                }
            }

            // Check update
            var matrixC = Matrix <Complex32> .Build.RandomPositiveDefinite(order, 1);

            var cholC = matrixC.Cholesky();

            chol.Factorize(matrixC);
            for (var i = 0; i < matrixC.RowCount; i++)
            {
                for (var j = 0; j < matrixC.ColumnCount; j++)
                {
                    Assert.AreEqual(cholC.Factor[i, j].Real, chol.Factor[i, j].Real, 1e-3f);
                    Assert.AreEqual(cholC.Factor[i, j].Imaginary, chol.Factor[i, j].Imaginary, 1e-3f);
                }
            }

            // Check size mismatch
            var matrixD = Matrix <Complex32> .Build.DenseIdentity(order + 1);

            Assert.That(() => chol.Factorize(matrixD), Throws.ArgumentException);
        }
Beispiel #6
0
        public void CanSolveForRandomMatrixWhenResultMatrixGiven(int row, int col)
        {
            var matrixA     = new UserDefinedMatrix(Matrix <float> .Build.RandomPositiveDefinite(row, 1).ToArray());
            var matrixACopy = matrixA.Clone();
            var chol        = matrixA.Cholesky();
            var matrixB     = new UserDefinedMatrix(Matrix <float> .Build.Random(row, col, 1).ToArray());
            var matrixBCopy = matrixB.Clone();
            var matrixX     = new UserDefinedMatrix(row, col);

            chol.Solve(matrixB, matrixX);

            Assert.AreEqual(matrixB.RowCount, matrixX.RowCount);
            Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);

            var matrixBReconstruct = matrixA * matrixX;

            // Check the reconstruction.
            for (var i = 0; i < matrixB.RowCount; i++)
            {
                for (var j = 0; j < matrixB.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixB[i, j], matrixBReconstruct[i, j], 1e-1);
                }
            }

            // Make sure A didn't change.
            for (var i = 0; i < matrixA.RowCount; i++)
            {
                for (var j = 0; j < matrixA.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixACopy[i, j], matrixA[i, j]);
                }
            }

            // Make sure B didn't change.
            for (var i = 0; i < matrixB.RowCount; i++)
            {
                for (var j = 0; j < matrixB.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixBCopy[i, j], matrixB[i, j]);
                }
            }
        }
Beispiel #7
0
        public void CanSolveForRandomVectorWhenResultVectorGiven(int order)
        {
            var matrixA     = new UserDefinedMatrix(Matrix <float> .Build.RandomPositiveDefinite(order, 1).ToArray());
            var matrixACopy = matrixA.Clone();
            var chol        = matrixA.Cholesky();
            var b           = new UserDefinedVector(Vector <float> .Build.Random(order, 1).ToArray());
            var matrixBCopy = b.Clone();
            var x           = new UserDefinedVector(order);

            chol.Solve(b, x);

            Assert.AreEqual(b.Count, x.Count);

            var matrixBReconstruct = matrixA * x;

            // Check the reconstruction.
            for (var i = 0; i < order; i++)
            {
                Assert.AreEqual(b[i], matrixBReconstruct[i], 1e-1);
            }

            // Make sure A didn't change.
            for (var i = 0; i < matrixA.RowCount; i++)
            {
                for (var j = 0; j < matrixA.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixACopy[i, j], matrixA[i, j]);
                }
            }

            // Make sure b didn't change.
            for (var i = 0; i < order; i++)
            {
                Assert.AreEqual(matrixBCopy[i], b[i]);
            }
        }
        public void CholeskyFailsWithNonSquareMatrix()
        {
            var matrixI = new UserDefinedMatrix(3, 1);

            Assert.That(() => matrixI.Cholesky(), Throws.ArgumentException);
        }
 public void CholeskyFailsWithNonSquareMatrix()
 {
     var matrixI = new UserDefinedMatrix(3, 2);
     Assert.That(() => matrixI.Cholesky(), Throws.ArgumentException);
 }
        public void CanSolveForRandomVectorWhenResultVectorGiven(int order)
        {
            var matrixA = new UserDefinedMatrix(Matrix<float>.Build.RandomPositiveDefinite(order, 1).ToArray());
            var matrixACopy = matrixA.Clone();
            var chol = matrixA.Cholesky();
            var b = new UserDefinedVector(Vector<float>.Build.Random(order, 1).ToArray());
            var matrixBCopy = b.Clone();
            var x = new UserDefinedVector(order);
            chol.Solve(b, x);

            Assert.AreEqual(b.Count, x.Count);

            var matrixBReconstruct = matrixA * x;

            // Check the reconstruction.
            for (var i = 0; i < order; i++)
            {
                Assert.AreEqual(b[i], matrixBReconstruct[i], 0.5);
            }

            // Make sure A didn't change.
            for (var i = 0; i < matrixA.RowCount; i++)
            {
                for (var j = 0; j < matrixA.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixACopy[i, j], matrixA[i, j]);
                }
            }

            // Make sure b didn't change.
            for (var i = 0; i < order; i++)
            {
                Assert.AreEqual(matrixBCopy[i], b[i]);
            }
        }
        public void CanSolveForRandomMatrixWhenResultMatrixGiven(int row, int col)
        {
            var matrixA = new UserDefinedMatrix(Matrix<float>.Build.RandomPositiveDefinite(row, 1).ToArray());
            var matrixACopy = matrixA.Clone();
            var chol = matrixA.Cholesky();
            var matrixB = new UserDefinedMatrix(Matrix<float>.Build.Random(row, col, 1).ToArray());
            var matrixBCopy = matrixB.Clone();
            var matrixX = new UserDefinedMatrix(row, col);
            chol.Solve(matrixB, matrixX);

            Assert.AreEqual(matrixB.RowCount, matrixX.RowCount);
            Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);

            var matrixBReconstruct = matrixA * matrixX;

            // Check the reconstruction.
            for (var i = 0; i < matrixB.RowCount; i++)
            {
                for (var j = 0; j < matrixB.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixB[i, j], matrixBReconstruct[i, j], 1.0);
                }
            }

            // Make sure A didn't change.
            for (var i = 0; i < matrixA.RowCount; i++)
            {
                for (var j = 0; j < matrixA.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixACopy[i, j], matrixA[i, j]);
                }
            }

            // Make sure B didn't change.
            for (var i = 0; i < matrixB.RowCount; i++)
            {
                for (var j = 0; j < matrixB.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixBCopy[i, j], matrixB[i, j]);
                }
            }
        }
        public void CanSolveForRandomVector(int order)
        {
            var matrixA = new UserDefinedMatrix(Matrix<Complex32>.Build.RandomPositiveDefinite(order, 1).ToArray());
            var matrixACopy = matrixA.Clone();
            var chol = matrixA.Cholesky();
            var b = new UserDefinedVector(Vector<Complex32>.Build.Random(order, 1).ToArray());
            var x = chol.Solve(b);

            Assert.AreEqual(b.Count, x.Count);

            var matrixBReconstruct = matrixA * x;

            // Check the reconstruction.
            for (var i = 0; i < order; i++)
            {
                Assert.AreEqual(b[i].Real, matrixBReconstruct[i].Real, 1e-3f);
                Assert.AreEqual(b[i].Imaginary, matrixBReconstruct[i].Imaginary, 1e-3f);
            }

            // Make sure A didn't change.
            for (var i = 0; i < matrixA.RowCount; i++)
            {
                for (var j = 0; j < matrixA.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixACopy[i, j], matrixA[i, j]);
                }
            }
        }
        public void CanSolveForRandomMatrix(int row, int col)
        {
            var matrixA = new UserDefinedMatrix(Matrix<Complex32>.Build.RandomPositiveDefinite(row, 1).ToArray());
            var matrixACopy = matrixA.Clone();
            var chol = matrixA.Cholesky();
            var matrixB = new UserDefinedMatrix(Matrix<Complex32>.Build.Random(row, col, 1).ToArray());
            var matrixX = chol.Solve(matrixB);

            Assert.AreEqual(matrixB.RowCount, matrixX.RowCount);
            Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);

            var matrixBReconstruct = matrixA * matrixX;

            // Check the reconstruction.
            for (var i = 0; i < matrixB.RowCount; i++)
            {
                for (var j = 0; j < matrixB.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixB[i, j].Real, matrixBReconstruct[i, j].Real, 0.01f);
                    Assert.AreEqual(matrixB[i, j].Imaginary, matrixBReconstruct[i, j].Imaginary, 0.01f);
                }
            }

            // Make sure A didn't change.
            for (var i = 0; i < matrixA.RowCount; i++)
            {
                for (var j = 0; j < matrixA.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixACopy[i, j], matrixA[i, j]);
                }
            }
        }
 public void CholeskyFailsWithNonSquareMatrix(int row, int col)
 {
     var I = new UserDefinedMatrix(row, col);
     I.Cholesky();
 }
        public void CholeskyFailsWithNonSquareMatrix(int row, int col)
        {
            var I = new UserDefinedMatrix(row, col);

            I.Cholesky();
        }