Beispiel #1
0
        ///
        public override float Predict(int user_id, int item_id)
        {
            double result = global_bias;

            if (user_id < user_bias.Length)
            {
                result += user_bias[user_id];
            }
            if (item_id < item_bias.Length)
            {
                result += item_bias[item_id];
            }

            if (user_id < user_attributes.NumberOfRows)
            {
                IList <int> attribute_list = user_attributes.GetEntriesByRow(user_id);
                if (attribute_list.Count > 0)
                {
                    double sum = 0;
                    double second_norm_denominator = attribute_list.Count;
                    foreach (int attribute_id in attribute_list)
                    {
                        sum += main_demo[attribute_id];
                    }
                    result += sum / second_norm_denominator;
                }
            }

            for (int d = 0; d < additional_user_attributes.Count; d++)
            {
                if (user_id < additional_user_attributes[d].NumberOfRows)
                {
                    IList <int> attribute_list = additional_user_attributes[d].GetEntriesByRow(user_id);
                    if (attribute_list.Count > 0)
                    {
                        double sum = 0;
                        double second_norm_denominator = attribute_list.Count;
                        foreach (int attribute_id in attribute_list)
                        {
                            sum += second_demo[d][attribute_id];
                        }
                        result += sum / second_norm_denominator;
                    }
                }
            }

            if (item_id < ItemAttributes.NumberOfRows)
            {
                IList <int> attribute_list = ItemAttributes.GetEntriesByRow(item_id);
                if (attribute_list.Count > 0)
                {
                    double sum = 0;
                    double second_norm_denominator = attribute_list.Count;
                    foreach (int attribute_id in attribute_list)
                    {
                        sum += main_metadata[attribute_id];
                    }
                    result += sum / second_norm_denominator;
                }
            }

            for (int g = 0; g < AdditionalItemAttributes.Count; g++)
            {
                if (item_id < AdditionalItemAttributes[g].NumberOfRows)
                {
                    IList <int> attribute_list = AdditionalItemAttributes[g].GetEntriesByRow(item_id);
                    if (attribute_list.Count > 0)
                    {
                        double sum = 0;
                        double second_norm_denominator = attribute_list.Count;
                        foreach (int attribute_id in attribute_list)
                        {
                            sum += second_metadata[g][attribute_id];
                        }
                        result += sum / second_norm_denominator;
                    }
                }
            }

            if (user_id < UserAttributes.NumberOfRows && item_id < ItemAttributes.NumberOfRows)
            {
                IList <int> item_attribute_list   = ItemAttributes.GetEntriesByRow(item_id);
                double      item_norm_denominator = item_attribute_list.Count;

                IList <int> user_attribute_list   = UserAttributes.GetEntriesByRow(user_id);
                float       user_norm_denominator = user_attribute_list.Count;

                float demo_spec = 0;
                float sum       = 0;
                foreach (int u_att in user_attribute_list)
                {
                    foreach (int i_att in item_attribute_list)
                    {
                        sum += h[0][u_att, i_att];
                    }
                }
                demo_spec += sum / user_norm_denominator;

                for (int d = 0; d < AdditionalUserAttributes.Count; d++)
                {
                    user_attribute_list   = AdditionalUserAttributes[d].GetEntriesByRow(user_id);
                    user_norm_denominator = user_attribute_list.Count;
                    sum = 0;
                    foreach (int u_att in user_attribute_list)
                    {
                        foreach (int i_att in item_attribute_list)
                        {
                            sum += h[d + 1][u_att, i_att];
                        }
                    }
                    demo_spec += sum / user_norm_denominator;
                }

                result += demo_spec / item_norm_denominator;
            }

            if (user_id <= MaxUserID && item_id <= MaxItemID)
            {
                result += DataType.MatrixExtensions.RowScalarProduct(user_factors, user_id, item_factors, item_id);
            }

            if (result > MaxRating)
            {
                return(MaxRating);
            }
            if (result < MinRating)
            {
                return(MinRating);
            }

            return((float)result);
        }
Beispiel #2
0
        ///
        protected override void Iterate(IList <int> rating_indices, bool update_user, bool update_item)
        {
            float reg = Regularization;             // to limit property accesses

            foreach (int index in rating_indices)
            {
                int u = ratings.Users[index];
                int i = ratings.Items[index];

                double prediction = global_bias + user_bias[u] + item_bias[i];

                if (u < user_attributes.NumberOfRows)
                {
                    IList <int> attribute_list = user_attributes.GetEntriesByRow(u);
                    if (attribute_list.Count > 0)
                    {
                        double sum = 0;
                        double second_norm_denominator = attribute_list.Count;
                        foreach (int attribute_id in attribute_list)
                        {
                            sum += main_demo[attribute_id];
                        }
                        prediction += sum / second_norm_denominator;
                    }
                }

                for (int d = 0; d < additional_user_attributes.Count; d++)
                {
                    if (u < additional_user_attributes[d].NumberOfRows)
                    {
                        IList <int> attribute_list = additional_user_attributes[d].GetEntriesByRow(u);
                        if (attribute_list.Count > 0)
                        {
                            double sum = 0;
                            double second_norm_denominator = attribute_list.Count;
                            foreach (int attribute_id in attribute_list)
                            {
                                sum += second_demo[d][attribute_id];
                            }
                            prediction += sum / second_norm_denominator;
                        }
                    }
                }

                if (i < ItemAttributes.NumberOfRows)
                {
                    IList <int> attribute_list = ItemAttributes.GetEntriesByRow(i);
                    if (attribute_list.Count > 0)
                    {
                        double sum = 0;
                        double second_norm_denominator = attribute_list.Count;
                        foreach (int attribute_id in attribute_list)
                        {
                            sum += main_metadata[attribute_id];
                        }
                        prediction += sum / second_norm_denominator;
                    }
                }

                for (int g = 0; g < AdditionalItemAttributes.Count; g++)
                {
                    if (i < AdditionalItemAttributes[g].NumberOfRows)
                    {
                        IList <int> attribute_list = AdditionalItemAttributes[g].GetEntriesByRow(i);
                        if (attribute_list.Count > 0)
                        {
                            double sum = 0;
                            double second_norm_denominator = attribute_list.Count;
                            foreach (int attribute_id in attribute_list)
                            {
                                sum += second_metadata[g][attribute_id];
                            }
                            prediction += sum / second_norm_denominator;
                        }
                    }
                }

                if (u < UserAttributes.NumberOfRows && i < ItemAttributes.NumberOfRows)
                {
                    IList <int> item_attribute_list   = ItemAttributes.GetEntriesByRow(i);
                    double      item_norm_denominator = item_attribute_list.Count;

                    IList <int> user_attribute_list   = UserAttributes.GetEntriesByRow(u);
                    float       user_norm_denominator = user_attribute_list.Count;

                    float demo_spec = 0;
                    float sum       = 0;
                    foreach (int u_att in user_attribute_list)
                    {
                        foreach (int i_att in item_attribute_list)
                        {
                            sum += h[0][u_att, i_att];
                        }
                    }
                    demo_spec += sum / user_norm_denominator;

                    for (int d = 0; d < AdditionalUserAttributes.Count; d++)
                    {
                        user_attribute_list   = AdditionalUserAttributes[d].GetEntriesByRow(u);
                        user_norm_denominator = user_attribute_list.Count;
                        sum = 0;
                        foreach (int u_att in user_attribute_list)
                        {
                            foreach (int i_att in item_attribute_list)
                            {
                                sum += h[d + 1][u_att, i_att];
                            }
                        }
                        demo_spec += sum / user_norm_denominator;
                    }

                    prediction += demo_spec / item_norm_denominator;
                }

                prediction += DataType.MatrixExtensions.RowScalarProduct(user_factors, u, item_factors, i);

                double err = ratings[index] - prediction;

                float user_reg_weight = FrequencyRegularization ? (float)(reg / Math.Sqrt(ratings.CountByUser[u])) : reg;
                float item_reg_weight = FrequencyRegularization ? (float)(reg / Math.Sqrt(ratings.CountByItem[i])) : reg;

                // adjust biases
                if (update_user)
                {
                    user_bias[u] += BiasLearnRate * current_learnrate * ((float)err - BiasReg * user_reg_weight * user_bias[u]);
                }
                if (update_item)
                {
                    item_bias[i] += BiasLearnRate * current_learnrate * ((float)err - BiasReg * item_reg_weight * item_bias[i]);
                }

                // adjust user attributes
                if (u < user_attributes.NumberOfRows)
                {
                    IList <int> attribute_list = user_attributes.GetEntriesByRow(u);
                    if (attribute_list.Count > 0)
                    {
                        double second_norm_denominator = attribute_list.Count;
                        double second_norm_error       = err / second_norm_denominator;

                        foreach (int attribute_id in attribute_list)
                        {
                            main_demo[attribute_id] += BiasLearnRate * current_learnrate * ((float)second_norm_error - BiasReg * reg * main_demo[attribute_id]);
                        }
                    }
                }

                for (int d = 0; d < additional_user_attributes.Count; d++)
                {
                    if (u < additional_user_attributes[d].NumberOfRows)
                    {
                        IList <int> attribute_list = additional_user_attributes[d].GetEntriesByRow(u);
                        if (attribute_list.Count > 0)
                        {
                            double second_norm_denominator = attribute_list.Count;
                            double second_norm_error       = err / second_norm_denominator;

                            foreach (int attribute_id in attribute_list)
                            {
                                second_demo[d][attribute_id] += BiasLearnRate * current_learnrate * ((float)second_norm_error - BiasReg * reg * second_demo[d][attribute_id]);
                            }
                        }
                    }
                }

                // adjust item attributes
                if (i < ItemAttributes.NumberOfRows)
                {
                    IList <int> attribute_list = ItemAttributes.GetEntriesByRow(i);
                    if (attribute_list.Count > 0)
                    {
                        foreach (int attribute_id in attribute_list)
                        {
                            main_metadata[attribute_id] += BiasLearnRate * current_learnrate * ((float)err - BiasReg * Regularization * main_metadata[attribute_id]);
                        }
                    }
                }

                for (int g = 0; g < AdditionalItemAttributes.Count; g++)
                {
                    if (i < AdditionalItemAttributes[g].NumberOfRows)
                    {
                        IList <int> attribute_list = AdditionalItemAttributes[g].GetEntriesByRow(i);
                        if (attribute_list.Count > 0)
                        {
                            foreach (int attribute_id in attribute_list)
                            {
                                second_metadata[g][attribute_id] += BiasLearnRate * current_learnrate * ((float)err - BiasReg * Regularization * second_metadata[g][attribute_id]);
                            }
                        }
                    }
                }

                // adjust demo specific attributes
                if (u < UserAttributes.NumberOfRows && i < ItemAttributes.NumberOfRows)
                {
                    IList <int> item_attribute_list   = ItemAttributes.GetEntriesByRow(i);
                    float       item_norm_denominator = item_attribute_list.Count;

                    IList <int> user_attribute_list = UserAttributes.GetEntriesByRow(u);
                    float       user_norm           = 1 / user_attribute_list.Count;

                    float norm_error = (float)err / item_norm_denominator;

                    foreach (int u_att in user_attribute_list)
                    {
                        foreach (int i_att in item_attribute_list)
                        {
                            h[0][u_att, i_att] += BiasLearnRate * current_learnrate * (norm_error * user_norm - BiasReg * reg * h[0][u_att, i_att]);
                        }
                    }

                    for (int d = 0; d < AdditionalUserAttributes.Count; d++)
                    {
                        user_attribute_list = AdditionalUserAttributes[d].GetEntriesByRow(u);
                        user_norm           = 1 / user_attribute_list.Count;

                        foreach (int u_att in user_attribute_list)
                        {
                            foreach (int i_att in item_attribute_list)
                            {
                                h[d + 1][u_att, i_att] += BiasLearnRate * current_learnrate * (norm_error * user_norm - BiasReg * reg * h[d + 1][u_att, i_att]);;
                            }
                        }
                    }
                }

                // adjust latent factors
                for (int f = 0; f < NumFactors; f++)
                {
                    double u_f = user_factors[u, f];
                    double i_f = item_factors[i, f];

                    if (update_user)
                    {
                        double delta_u = err * i_f - user_reg_weight * u_f;
                        user_factors.Inc(u, f, current_learnrate * delta_u);
                    }
                    if (update_item)
                    {
                        double delta_i = err * u_f - item_reg_weight * i_f;
                        item_factors.Inc(i, f, current_learnrate * delta_i);
                    }
                }
            }

            UpdateLearnRate();
        }
        /// <summary>
        /// Iterate once over rating data and adjust corresponding factors (stochastic gradient descent)
        /// </summary>
        /// <param name='rating_indices'>
        /// a list of indices pointing to the ratings to iterate over
        /// </param>
        /// <param name='update_user'>
        /// true if user factors to be updated
        /// </param>
        /// <param name='update_item'>
        /// true if item factors to be updated
        /// </param>
        protected override void Iterate(IList <int> rating_indices, bool update_user, bool update_item)
        {
            user_factors = null;             // delete old user factors
            float reg = Regularization;      // to limit property accesses

            foreach (int index in rating_indices)
            {
                int u = ratings.Users[index];
                int i = ratings.Items[index];

                float prediction = global_bias + user_bias[u] + item_bias[i];

                var    p_plus_y_sum_vector = y.SumOfRows(items_rated_by_user[u]);
                double norm_denominator    = Math.Sqrt(items_rated_by_user[u].Length);
                for (int f = 0; f < p_plus_y_sum_vector.Count; f++)
                {
                    p_plus_y_sum_vector[f] = (float)(p_plus_y_sum_vector[f] / norm_denominator + p[u, f]);
                }

                prediction += DataType.MatrixExtensions.RowScalarProduct(item_factors, i, p_plus_y_sum_vector);

                // MANZATO FIX
                if (u < UserAttributes.NumberOfRows)
                {
                    IList <int> attribute_list = UserAttributes.GetEntriesByRow(u);
                    if (attribute_list.Count > 0)
                    {
                        float sum = 0;
                        float second_norm_denominator = attribute_list.Count;
                        foreach (int attribute_id in attribute_list)
                        {
                            sum += main_demo[attribute_id];
                        }
                        prediction += sum / second_norm_denominator;
                    }
                }
                // MANZATO FIX
                for (int d = 0; d < AdditionalUserAttributes.Count; d++)
                {
                    if (u < AdditionalUserAttributes[d].NumberOfRows)
                    {
                        IList <int> attribute_list = AdditionalUserAttributes[d].GetEntriesByRow(u);
                        if (attribute_list.Count > 0)
                        {
                            float sum = 0;
                            float second_norm_denominator = attribute_list.Count;
                            foreach (int attribute_id in attribute_list)
                            {
                                sum += second_demo[d][attribute_id];
                            }
                            prediction += sum / second_norm_denominator;
                        }
                    }
                }
                // MANZATO ADD
                if (i < ItemAttributes.NumberOfRows)
                {
                    IList <int> attribute_list = ItemAttributes.GetEntriesByRow(i);
                    if (attribute_list.Count > 0)
                    {
                        float sum = 0;
                        float second_norm_denominator = attribute_list.Count;
                        foreach (int attribute_id in attribute_list)
                        {
                            sum += main_metadata[attribute_id];
                        }
                        prediction += sum / second_norm_denominator;
                    }
                }

                for (int g = 0; g < AdditionalItemAttributes.Count; g++)
                {
                    if (i < AdditionalItemAttributes[g].NumberOfRows)
                    {
                        IList <int> attribute_list = AdditionalItemAttributes[g].GetEntriesByRow(i);
                        if (attribute_list.Count > 0)
                        {
                            float sum = 0;
                            float second_norm_denominator = attribute_list.Count;
                            foreach (int attribute_id in attribute_list)
                            {
                                sum += second_metadata[g][attribute_id];
                            }
                            prediction += sum / second_norm_denominator;
                        }
                    }
                }
                // MANZATO FIX
                if (u < UserAttributes.NumberOfRows && i < ItemAttributes.NumberOfRows)
                {
                    IList <int> item_attribute_list   = ItemAttributes.GetEntriesByRow(i);
                    float       item_norm_denominator = item_attribute_list.Count;

                    IList <int> user_attribute_list   = UserAttributes.GetEntriesByRow(u);
                    float       user_norm_denominator = user_attribute_list.Count;

                    float demo_spec = 0;
                    float sum       = 0;
                    foreach (int u_att in user_attribute_list)
                    {
                        foreach (int i_att in item_attribute_list)
                        {
                            sum += h[0][u_att, i_att];
                        }
                    }
                    demo_spec += sum / user_norm_denominator;

                    for (int d = 0; d < AdditionalUserAttributes.Count; d++)
                    {
                        user_attribute_list   = AdditionalUserAttributes[d].GetEntriesByRow(u);
                        user_norm_denominator = user_attribute_list.Count;
                        sum = 0;
                        foreach (int u_att in user_attribute_list)
                        {
                            foreach (int i_att in item_attribute_list)
                            {
                                sum += h[d + 1][u_att, i_att];
                            }
                        }
                        demo_spec += sum / user_norm_denominator;
                    }

                    prediction += demo_spec / item_norm_denominator;
                }


                float err = ratings[index] - prediction;

                float user_reg_weight = FrequencyRegularization ? (float)(reg / Math.Sqrt(ratings.CountByUser[u])) : reg;
                float item_reg_weight = FrequencyRegularization ? (float)(reg / Math.Sqrt(ratings.CountByItem[i])) : reg;

                // adjust biases
                if (update_user)
                {
                    user_bias[u] += BiasLearnRate * current_learnrate * ((float)err - BiasReg * user_reg_weight * user_bias[u]);
                }
                if (update_item)
                {
                    item_bias[i] += BiasLearnRate * current_learnrate * ((float)err - BiasReg * item_reg_weight * item_bias[i]);
                }

                // adjust factors  ||  DITO extension
                double normalized_error = err / norm_denominator;
                for (int f = 0; f < NumFactors; f++)
                {
                    float i_f = item_factors[i, f];

                    // if necessary, compute and apply updates
                    if (update_user)
                    {
                        double delta_u = err * i_f - user_reg_weight * p[u, f];
                        p.Inc(u, f, current_learnrate * delta_u);
                    }
                    if (update_item)
                    {
                        double delta_i = err * p_plus_y_sum_vector[f] - item_reg_weight * i_f;
                        item_factors.Inc(i, f, current_learnrate * delta_i);
                        double common_update = normalized_error * i_f;
                        foreach (int other_item_id in items_rated_by_user[u])
                        {
                            double delta_oi = common_update - y_reg[other_item_id] * y[other_item_id, f];
                            y.Inc(other_item_id, f, current_learnrate * delta_oi);
                        }
                    }
                }

                // adjust demo global attributes
                if (u < UserAttributes.NumberOfRows)
                {
                    IList <int> attribute_list = UserAttributes.GetEntriesByRow(u);
                    if (attribute_list.Count > 0)
                    {
                        foreach (int attribute_id in attribute_list)
                        {
                            main_demo[attribute_id] += BiasLearnRate * current_learnrate * (err - BiasReg * Regularization * main_demo[attribute_id]);
                        }
                    }
                }

                for (int d = 0; d < AdditionalUserAttributes.Count; d++)
                {
                    if (u < AdditionalUserAttributes[d].NumberOfRows)
                    {
                        IList <int> attribute_list = AdditionalUserAttributes[d].GetEntriesByRow(u);
                        if (attribute_list.Count > 0)
                        {
                            foreach (int attribute_id in attribute_list)
                            {
                                second_demo[d][attribute_id] += BiasLearnRate * current_learnrate * (err - BiasReg * Regularization * second_demo[d][attribute_id]);
                            }
                        }
                    }
                }

                // adjust metadata global attributes
                // adjust item attributes
                if (i < ItemAttributes.NumberOfRows)
                {
                    IList <int> attribute_list = ItemAttributes.GetEntriesByRow(i);
                    if (attribute_list.Count > 0)
                    {
                        foreach (int attribute_id in attribute_list)
                        {
                            main_metadata[attribute_id] += BiasLearnRate * current_learnrate * ((float)err - BiasReg * Regularization * main_metadata[attribute_id]);
                        }
                    }
                }

                for (int g = 0; g < AdditionalItemAttributes.Count; g++)
                {
                    if (i < AdditionalItemAttributes[g].NumberOfRows)
                    {
                        IList <int> attribute_list = AdditionalItemAttributes[g].GetEntriesByRow(i);
                        if (attribute_list.Count > 0)
                        {
                            foreach (int attribute_id in attribute_list)
                            {
                                second_metadata[g][attribute_id] += BiasLearnRate * current_learnrate * ((float)err - BiasReg * Regularization * second_metadata[g][attribute_id]);
                            }
                        }
                    }
                }

                // adjust demo specific attributes
                if (u < UserAttributes.NumberOfRows && i < ItemAttributes.NumberOfRows)
                {
                    IList <int> item_attribute_list   = ItemAttributes.GetEntriesByRow(i);
                    float       item_norm_denominator = item_attribute_list.Count;

                    IList <int> user_attribute_list = UserAttributes.GetEntriesByRow(u);
                    float       user_norm           = 1 / user_attribute_list.Count;

                    float norm_error = err / item_norm_denominator;

                    foreach (int u_att in user_attribute_list)
                    {
                        foreach (int i_att in item_attribute_list)
                        {
                            h[0][u_att, i_att] += current_learnrate * (norm_error * user_norm - Regularization * h[0][u_att, i_att]);
                        }
                    }

                    for (int d = 0; d < AdditionalUserAttributes.Count; d++)
                    {
                        user_attribute_list = AdditionalUserAttributes[d].GetEntriesByRow(u);
                        user_norm           = 1 / user_attribute_list.Count;

                        foreach (int u_att in user_attribute_list)
                        {
                            foreach (int i_att in item_attribute_list)
                            {
                                h[d + 1][u_att, i_att] += current_learnrate * (norm_error * user_norm - Regularization * h[d + 1][u_att, i_att]);;
                            }
                        }
                    }
                }
            }

            UpdateLearnRate();
        }
        ///
        protected override float Predict(int user_id, int item_id, bool bound)
        {
            double result = global_bias;

            if (user_id < user_bias.Length)
            {
                result += user_bias[user_id];
            }
            if (item_id < item_bias.Length)
            {
                result += item_bias[item_id];
            }

            if (user_id < UserAttributes.NumberOfRows)
            {
                IList <int> attribute_list = UserAttributes.GetEntriesByRow(user_id);
                if (attribute_list.Count > 0)
                {
                    double sum = 0;
                    double second_norm_denominator = attribute_list.Count;
                    foreach (int attribute_id in attribute_list)
                    {
                        sum += main_demo[attribute_id];
                    }
                    result += sum / second_norm_denominator;
                }
            }

            for (int d = 0; d < AdditionalUserAttributes.Count; d++)
            {
                if (user_id < AdditionalUserAttributes[d].NumberOfRows)
                {
                    IList <int> attribute_list = AdditionalUserAttributes[d].GetEntriesByRow(user_id);
                    if (attribute_list.Count > 0)
                    {
                        double sum = 0;
                        double second_norm_denominator = attribute_list.Count;
                        foreach (int attribute_id in attribute_list)
                        {
                            sum += second_demo[d][attribute_id];
                        }
                        result += sum / second_norm_denominator;
                    }
                }
            }

            if (item_id < ItemAttributes.NumberOfRows)
            {
                IList <int> attribute_list = ItemAttributes.GetEntriesByRow(item_id);
                if (attribute_list.Count > 0)
                {
                    double sum = 0;
                    double second_norm_denominator = attribute_list.Count;
                    foreach (int attribute_id in attribute_list)
                    {
                        sum += main_metadata[attribute_id];
                    }
                    result += sum / second_norm_denominator;
                }
            }

            for (int g = 0; g < AdditionalItemAttributes.Count; g++)
            {
                if (item_id < AdditionalItemAttributes[g].NumberOfRows)
                {
                    IList <int> attribute_list = AdditionalItemAttributes[g].GetEntriesByRow(item_id);
                    if (attribute_list.Count > 0)
                    {
                        double sum = 0;
                        double second_norm_denominator = attribute_list.Count;
                        foreach (int attribute_id in attribute_list)
                        {
                            sum += second_metadata[g][attribute_id];
                        }
                        result += sum / second_norm_denominator;
                    }
                }
            }

            if (bound)
            {
                if (result > MaxRating)
                {
                    return(MaxRating);
                }
                if (result < MinRating)
                {
                    return(MinRating);
                }
            }
            return((float)result);
        }
        ///
        protected override void Iterate(IList <int> rating_indices, bool update_user, bool update_item)
        {
            float reg = Regularization;             // to limit property accesses

            foreach (int index in rating_indices)
            {
                int u = ratings.Users[index];
                int i = ratings.Items[index];

                float prediction = Predict(u, i, false);
                float err        = ratings[index] - prediction;

                float user_reg_weight = FrequencyRegularization ? (float)(reg / Math.Sqrt(ratings.CountByUser[u])) : reg;
                float item_reg_weight = FrequencyRegularization ? (float)(reg / Math.Sqrt(ratings.CountByItem[i])) : reg;

                // adjust biases
                if (update_user)
                {
                    user_bias[u] += BiasLearnRate * current_learnrate * ((float)err - BiasReg * user_reg_weight * user_bias[u]);
                }
                if (update_item)
                {
                    item_bias[i] += BiasLearnRate * current_learnrate * ((float)err - BiasReg * item_reg_weight * item_bias[i]);
                }

                // adjust user attributes
                if (u < UserAttributes.NumberOfRows)
                {
                    IList <int> attribute_list = UserAttributes.GetEntriesByRow(u);
                    if (attribute_list.Count > 0)
                    {
                        foreach (int attribute_id in attribute_list)
                        {
                            main_demo[attribute_id] += BiasLearnRate * current_learnrate * (err - BiasReg * Regularization * main_demo[attribute_id]);
                        }
                    }
                }

                for (int d = 0; d < AdditionalUserAttributes.Count; d++)
                {
                    if (u < AdditionalUserAttributes[d].NumberOfRows)
                    {
                        IList <int> attribute_list = AdditionalUserAttributes[d].GetEntriesByRow(u);
                        if (attribute_list.Count > 0)
                        {
                            foreach (int attribute_id in attribute_list)
                            {
                                second_demo[d][attribute_id] += BiasLearnRate * current_learnrate * (err - BiasReg * Regularization * second_demo[d][attribute_id]);
                            }
                        }
                    }
                }

                // adjust item attributes
                if (i < ItemAttributes.NumberOfRows)
                {
                    IList <int> attribute_list = ItemAttributes.GetEntriesByRow(i);
                    if (attribute_list.Count > 0)
                    {
                        foreach (int attribute_id in attribute_list)
                        {
                            main_metadata[attribute_id] += BiasLearnRate * current_learnrate * (err - BiasReg * Regularization * main_metadata[attribute_id]);
                        }
                    }
                }

                for (int g = 0; g < AdditionalItemAttributes.Count; g++)
                {
                    if (i < AdditionalItemAttributes[g].NumberOfRows)
                    {
                        IList <int> attribute_list = AdditionalItemAttributes[g].GetEntriesByRow(i);
                        if (attribute_list.Count > 0)
                        {
                            foreach (int attribute_id in attribute_list)
                            {
                                second_metadata[g][attribute_id] += BiasLearnRate * current_learnrate * (err - BiasReg * Regularization * second_metadata[g][attribute_id]);
                            }
                        }
                    }
                }
            }

            UpdateLearnRate();
        }
        ///
        protected override float Predict(int user_id, int item_id, bool bound)
        {
            double result = base.Predict(user_id, item_id, false);

            if (user_id < UserAttributes.NumberOfRows && item_id < ItemAttributes.NumberOfRows)
            {
                IList <int> item_attribute_list   = ItemAttributes.GetEntriesByRow(item_id);
                double      item_norm_denominator = item_attribute_list.Count;

                IList <int> user_attribute_list   = UserAttributes.GetEntriesByRow(user_id);
                float       user_norm_denominator = user_attribute_list.Count;

                float demo_spec = 0;
                float sum       = 0;
                foreach (int u_att in user_attribute_list)
                {
                    foreach (int i_att in item_attribute_list)
                    {
                        sum += h[0][u_att, i_att];
                    }
                }
                demo_spec += sum / user_norm_denominator;

                for (int d = 0; d < AdditionalUserAttributes.Count; d++)
                {
                    user_attribute_list   = AdditionalUserAttributes[d].GetEntriesByRow(user_id);
                    user_norm_denominator = user_attribute_list.Count;
                    sum = 0;
                    foreach (int u_att in user_attribute_list)
                    {
                        foreach (int i_att in item_attribute_list)
                        {
                            sum += h[d + 1][u_att, i_att];
                        }
                    }
                    demo_spec += sum / user_norm_denominator;
                }

                result += demo_spec / item_norm_denominator;
            }

            if (item_id < ItemAttributes.NumberOfRows)
            {
                IList <int> attribute_list = ItemAttributes.GetEntriesByRow(item_id);
                if (attribute_list.Count > 0)
                {
                    double sum = 0;
                    double second_norm_denominator = attribute_list.Count;
                    foreach (int attribute_id in attribute_list)
                    {
                        sum += main_metadata[attribute_id];
                    }
                    result += sum / second_norm_denominator;
                }
            }

            for (int g = 0; g < AdditionalItemAttributes.Count; g++)
            {
                if (item_id < AdditionalItemAttributes[g].NumberOfRows)
                {
                    IList <int> attribute_list = AdditionalItemAttributes[g].GetEntriesByRow(item_id);
                    if (attribute_list.Count > 0)
                    {
                        double sum = 0;
                        double second_norm_denominator = attribute_list.Count;
                        foreach (int attribute_id in attribute_list)
                        {
                            sum += second_metadata[g][attribute_id];
                        }
                        result += sum / second_norm_denominator;
                    }
                }
            }

            if (bound)
            {
                if (result > MaxRating)
                {
                    return(MaxRating);
                }
                if (result < MinRating)
                {
                    return(MinRating);
                }
            }
            return((float)result);
        }