Beispiel #1
0
        public override float Predict(ModelDataSet input)
        {
            if (TrainedModel == null)
            {
                throw new Exception("Must initialize the model before calling");
            }

            lock (TrainedModel)
            {
                // cache for reuse
                if (PredictInput == null)
                {
                    PredictInput = new float[input.Features()];
                }
                for (int i = 0; i < PredictInput.Length; i++)
                {
                    PredictInput[i] = input.Feature(i);
                }

                using (var arr = InputArray.Create <float>(PredictInput))
                {
                    return(TrainedModel.Predict(arr));
                }
            }
        }
Beispiel #2
0
        public override float Predict(float[] data)
        {
            if (TrainedModel == null)
            {
                throw new InvalidOperationException("Must train/load a model before predicting");
            }

            lock (TrainedModel)
            {
                using (var arr = InputArray.Create <float>(data))
                {
                    return(TrainedModel.Predict(arr));
                }
            }
        }
Beispiel #3
0
        public override float Predict(DataSet data)
        {
            if (TrainedModel == null)
            {
                throw new InvalidOperationException("Must train/load a model before evaluating");
            }

            lock (TrainedModel)
            {
#if ML_LEGACY
                var result = TrainedModel.Predict(data);
                return(result.Score);
#else
                var result = PredictFunc.Predict(data);
                return(result.Score);
#endif
            }
        }
Beispiel #4
0
        public override float Predict(ModelDataSet data)
        {
            if (TrainedModel == null)
            {
                throw new Exception("Must initialize the model before calling");
            }

            lock (TrainedModel)
            {
#if ML_LEGACY
                var result = TrainedModel.Predict(data);
                return(result.Score);
#else
                var result = PredictFunc.Predict(data);
                return(result.Score);
#endif
            }
        }