private bool DoExternalSeparated(TriangleShape triangle, out TinyStructList <ContactData> contactList)
 {
     if (GJKToolbox.AreShapesIntersecting(convex, triangle, ref Toolbox.RigidIdentity, ref Toolbox.RigidIdentity, ref localSeparatingAxis))
     {
         state = CollisionState.ExternalNear;
         return(DoExternalNear(triangle, out contactList));
     }
     TryToEscape();
     contactList = new TinyStructList <ContactData>();
     return(false);
 }
 //Relies on the triangle being located in the local space of the convex object.  The convex transform is used to transform the
 //contact points back from the convex's local space into world space.
 ///<summary>
 /// Generates a contact between the triangle and convex.
 ///</summary>
 /// <param name="triangle">Triangle to test the convex against. The input triangle should be transformed into the local space of the convex.</param>
 ///<param name="contactList">Contact between the shapes, if any.</param>
 ///<returns>Whether or not the shapes are colliding.</returns>
 public override bool GenerateContactCandidates(TriangleShape triangle, out TinyStructList<ContactData> contactList)
 {
     switch (state)
     {
         case CollisionState.Plane:
             return DoPlaneTest(triangle, out contactList);
         case CollisionState.ExternalSeparated:
             return DoExternalSeparated(triangle, out contactList);
         case CollisionState.ExternalNear:
             return DoExternalNear(triangle, out contactList);
         case CollisionState.Deep:
             return DoDeepContact(triangle, out contactList);
         default:
             contactList = new TinyStructList<ContactData>();
             return false;
     }
 }
        //TODO: Having a specialized triangle-triangle pair test would be nice.  Even if it didn't use an actual triangle-triangle test, certain assumptions could still make it speedier and more elegant.
        //"Closest points between triangles" + persistent manifolding would probably be the best approach (a lot faster than the triangle-convex general case anyway).
        public override bool GenerateContactCandidates(TriangleShape triangle,
                                                       out TinyStructList <ContactData> contactList)
        {
            if (base.GenerateContactCandidates(triangle, out contactList))
            {
                //The triangle-convex pair test has already rejected contacts whose normals would violate the first triangle's sidedness.
                //However, since it's a vanilla triangle-convex test, it doesn't know about the sidedness of the other triangle!
                TriangleShape shape = (TriangleShape)convex;
                Vector3       normal;
                //Lots of recalculating ab-bc!
                Vector3 ab, ac;
                Vector3.Subtract(ref shape.vB, ref shape.vA, out ab);
                Vector3.Subtract(ref shape.vC, ref shape.vA, out ac);
                Vector3.Cross(ref ab, ref ac, out normal);
                TriangleSidedness sidedness = shape.sidedness;
                if (sidedness != TriangleSidedness.DoubleSided)
                {
                    for (int i = contactList.Count - 1; i >= 0; i--)
                    {
                        ContactData item;
                        contactList.Get(i, out item);

                        float dot;
                        Vector3.Dot(ref item.Normal, ref normal, out dot);
                        if (sidedness == TriangleSidedness.Clockwise)
                        {
                            if (dot < 0)
                            {
                                contactList.RemoveAt(i);
                            }
                        }
                        else
                        {
                            if (dot > 0)
                            {
                                contactList.RemoveAt(i);
                            }
                        }
                    }
                }

                return(contactList.Count > 0);
            }

            return(false);
        }
        //TODO: Having a specialized triangle-triangle pair test would be nice.  Even if it didn't use an actual triangle-triangle test, certain assumptions could still make it speedier and more elegant.
        //"Closest points between triangles" + persistent manifolding would probably be the best approach (a lot faster than the triangle-convex general case anyway).
        public override bool GenerateContactCandidate(out TinyStructList<ContactData> contactList)
        {
            if (base.GenerateContactCandidate(out contactList))
            {
                //The triangle-convex pair test has already rejected contacts whose normals would violate the first triangle's sidedness.
                //However, since it's a vanilla triangle-convex test, it doesn't know about the sidedness of the other triangle!
                var shape = ((TriangleShape)convex);
                Vector3 normal;
                //Lots of recalculating ab-bc!
                Vector3 ab, ac;
                Vector3.Subtract(ref shape.vB, ref shape.vA, out ab);
                Vector3.Subtract(ref shape.vC, ref shape.vA, out ac);
                Vector3.Cross(ref ab, ref ac, out normal);
                var sidedness = shape.sidedness;
                if (sidedness != TriangleSidedness.DoubleSided)
                {
                    for (int i = contactList.Count - 1; i >= 0; i--)
                    {
                        ContactData item;
                        contactList.Get(i, out item);

                        float dot;
                        Vector3.Dot(ref item.Normal, ref normal, out dot);
                        if (sidedness == TriangleSidedness.Clockwise)
                        {
                            if (dot < 0)
                            {
                                contactList.RemoveAt(i);
                            }
                        }
                        else
                        {
                            if (dot > 0)
                            {
                                contactList.RemoveAt(i);
                            }
                        }
                    }
                }
                return contactList.Count > 0;
            }
            return false;
        }
        //Relies on the triangle being located in the local space of the convex object.  The convex transform is used to transform the
        //contact points back from the convex's local space into world space.
        ///<summary>
        /// Generates a contact between the triangle and convex.
        ///</summary>
        /// <param name="triangle">Triangle to test the convex against. The input triangle should be transformed into the local space of the convex.</param>
        ///<param name="contactList">Contact between the shapes, if any.</param>
        ///<returns>Whether or not the shapes are colliding.</returns>
        public override bool GenerateContactCandidates(TriangleShape triangle, out TinyStructList <ContactData> contactList)
        {
            switch (state)
            {
            case CollisionState.Plane:
                return(DoPlaneTest(triangle, out contactList));

            case CollisionState.ExternalSeparated:
                return(DoExternalSeparated(triangle, out contactList));

            case CollisionState.ExternalNear:
                return(DoExternalNear(triangle, out contactList));

            case CollisionState.Deep:
                return(DoDeepContact(triangle, out contactList));

            default:
                contactList = new TinyStructList <ContactData>();
                return(false);
            }
        }
Beispiel #6
0
 //Relies on the triangle being located in the local space of the convex object.  The convex transform is used to transform the
 //contact points back from the convex's local space into world space.
 ///<summary>
 /// Generates a contact between the triangle and convex.
 ///</summary>
 /// <param name="triangle">Triangle to test</param>
 ///<param name="contactList">Contact between the shapes, if any.</param>
 ///<returns>Whether or not the shapes are colliding.</returns>
 public abstract bool GenerateContactCandidates(TriangleShape triangle, out TinyStructList <ContactData> contactList);
        private bool DoExternalSeparated(out TinyStructList<ContactData> contactList)
        {

            if (GJKToolbox.AreShapesIntersecting(convex, triangle, ref Toolbox.RigidIdentity, ref Toolbox.RigidIdentity, ref localSeparatingAxis))
            {
                state = CollisionState.ExternalNear;
                return DoExternalNear(out contactList);
            }
            TryToEscape();
            contactList = new TinyStructList<ContactData>();
            return false;
        }
Beispiel #8
0
        private bool DoDeepContact(TriangleShape triangle, out TinyStructList <ContactData> contactList)
        {
            //Find the origin to triangle center offset.
            Vector3 center;

            Vector3.Add(ref triangle.vA, ref triangle.vB, out center);
            Vector3.Add(ref center, ref triangle.vC, out center);
            Vector3.Multiply(ref center, 1f / 3f, out center);

            ContactData contact;

            contactList = new TinyStructList <ContactData>();

            if (MPRToolbox.AreLocalShapesOverlapping(convex, triangle, ref center, ref Toolbox.RigidIdentity))
            {
                float dot;


                Vector3 triangleNormal, ab, ac;
                Vector3.Subtract(ref triangle.vB, ref triangle.vA, out ab);
                Vector3.Subtract(ref triangle.vC, ref triangle.vA, out ac);
                Vector3.Cross(ref ab, ref ac, out triangleNormal);
                float lengthSquared = triangleNormal.LengthSquared();
                if (lengthSquared < Toolbox.Epsilon * .01f)
                {
                    //Degenerate triangle! That's no good.
                    //Just use the direction pointing from A to B, "B" being the triangle.  That direction is center - origin, or just center.
                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref center,
                                                out contact.PenetrationDepth, out contact.Normal, out contact.Position);
                }
                else
                {
                    //Normalize the normal.
                    Vector3.Divide(ref triangleNormal, (float)Math.Sqrt(lengthSquared), out triangleNormal);


                    //TODO: This tests all three edge axes with a full MPR raycast.  That's not really necessary; the correct edge normal should be discoverable, resulting in a single MPR raycast.

                    //Find the edge directions that will be tested with MPR.
                    Vector3 AO, BO, CO;
                    Vector3 AB, BC, CA;
                    Vector3.Subtract(ref center, ref triangle.vA, out AO);
                    Vector3.Subtract(ref center, ref triangle.vB, out BO);
                    Vector3.Subtract(ref center, ref triangle.vC, out CO);
                    Vector3.Subtract(ref triangle.vB, ref triangle.vA, out AB);
                    Vector3.Subtract(ref triangle.vC, ref triangle.vB, out BC);
                    Vector3.Subtract(ref triangle.vA, ref triangle.vC, out CA);


                    //We don't have to worry about degenerate triangles here because we've already handled that possibility above.
                    Vector3 ABnormal, BCnormal, CAnormal;

                    //Project the center onto the edge to find the direction from the center to the edge AB.
                    Vector3.Dot(ref AO, ref AB, out dot);
                    Vector3.Multiply(ref AB, dot / AB.LengthSquared(), out ABnormal);
                    Vector3.Subtract(ref AO, ref ABnormal, out ABnormal);
                    ABnormal.Normalize();

                    //Project the center onto the edge to find the direction from the center to the edge BC.
                    Vector3.Dot(ref BO, ref BC, out dot);
                    Vector3.Multiply(ref BC, dot / BC.LengthSquared(), out BCnormal);
                    Vector3.Subtract(ref BO, ref BCnormal, out BCnormal);
                    BCnormal.Normalize();

                    //Project the center onto the edge to find the direction from the center to the edge BC.
                    Vector3.Dot(ref CO, ref CA, out dot);
                    Vector3.Multiply(ref CA, dot / CA.LengthSquared(), out CAnormal);
                    Vector3.Subtract(ref CO, ref CAnormal, out CAnormal);
                    CAnormal.Normalize();


                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref ABnormal,
                                                out contact.PenetrationDepth, out contact.Normal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3.Dot(ref triangleNormal, ref contact.Normal, out dot);
                    if (triangle.sidedness == TriangleSidedness.Clockwise && dot > 0 ||
                        triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0)
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        Vector3 previousNormal = contact.Normal;
                        Vector3.Dot(ref contact.Normal, ref triangleNormal, out dot);

                        Vector3 p;
                        Vector3.Multiply(ref contact.Normal, dot, out p);
                        Vector3.Subtract(ref contact.Normal, ref p, out contact.Normal);
                        float length = contact.Normal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3.Divide(ref contact.Normal, (float)Math.Sqrt(length), out contact.Normal);
                            Vector3.Dot(ref contact.Normal, ref previousNormal, out dot);
                            contact.PenetrationDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal           = new Vector3();
                        }
                    }


                    Vector3 candidateNormal;
                    float   candidateDepth;

                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref BCnormal,
                                                out candidateDepth, out candidateNormal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3.Dot(ref triangleNormal, ref candidateNormal, out dot);
                    if (triangle.sidedness == TriangleSidedness.Clockwise && dot > 0 ||
                        triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0)
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        Vector3 previousNormal = candidateNormal;
                        Vector3.Dot(ref candidateNormal, ref triangleNormal, out dot);

                        Vector3 p;
                        Vector3.Multiply(ref candidateNormal, dot, out p);
                        Vector3.Subtract(ref candidateNormal, ref p, out candidateNormal);
                        float length = candidateNormal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3.Divide(ref candidateNormal, (float)Math.Sqrt(length), out candidateNormal);
                            Vector3.Dot(ref candidateNormal, ref previousNormal, out dot);
                            candidateDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal           = new Vector3();
                        }
                    }

                    if (candidateDepth < contact.PenetrationDepth)
                    {
                        contact.Normal           = candidateNormal;
                        contact.PenetrationDepth = candidateDepth;
                    }


                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref CAnormal,
                                                out candidateDepth, out candidateNormal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3.Dot(ref triangleNormal, ref candidateNormal, out dot);
                    if (triangle.sidedness == TriangleSidedness.Clockwise && dot > 0 ||
                        triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0)
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        Vector3 previousNormal = candidateNormal;
                        Vector3.Dot(ref candidateNormal, ref triangleNormal, out dot);

                        Vector3 p;
                        Vector3.Multiply(ref candidateNormal, dot, out p);
                        Vector3.Subtract(ref candidateNormal, ref p, out candidateNormal);
                        float length = candidateNormal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3.Divide(ref candidateNormal, (float)Math.Sqrt(length), out candidateNormal);
                            Vector3.Dot(ref candidateNormal, ref previousNormal, out dot);
                            candidateDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal           = new Vector3();
                        }
                    }

                    if (candidateDepth < contact.PenetrationDepth)
                    {
                        contact.Normal           = candidateNormal;
                        contact.PenetrationDepth = candidateDepth;
                    }


                    //Try the depth along the positive triangle normal.

                    //If it's clockwise, this direction is unnecessary (the resulting normal would be invalidated by the onesidedness of the triangle).
                    if (triangle.sidedness != TriangleSidedness.Clockwise)
                    {
                        MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref triangleNormal,
                                                    out candidateDepth, out candidateNormal);
                        if (candidateDepth < contact.PenetrationDepth)
                        {
                            contact.Normal           = candidateNormal;
                            contact.PenetrationDepth = candidateDepth;
                        }
                    }

                    //Try the depth along the negative triangle normal.

                    //If it's counterclockwise, this direction is unnecessary (the resulting normal would be invalidated by the onesidedness of the triangle).
                    if (triangle.sidedness != TriangleSidedness.Counterclockwise)
                    {
                        Vector3.Negate(ref triangleNormal, out triangleNormal);
                        MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref triangleNormal,
                                                    out candidateDepth, out candidateNormal);
                        if (candidateDepth < contact.PenetrationDepth)
                        {
                            contact.Normal           = candidateNormal;
                            contact.PenetrationDepth = candidateDepth;
                        }
                    }
                }


                MPRToolbox.RefinePenetration(convex, triangle, ref Toolbox.RigidIdentity, contact.PenetrationDepth,
                                             ref contact.Normal, out contact.PenetrationDepth, out contact.Normal, out contact.Position);

                //It's possible for the normal to still face the 'wrong' direction according to one sided triangles.
                if (triangle.sidedness != TriangleSidedness.DoubleSided)
                {
                    Vector3.Dot(ref triangleNormal, ref contact.Normal, out dot);
                    if (dot < 0)
                    //Skip the add process.
                    {
                        goto InnerSphere;
                    }
                }


                contact.Id = -1;

                if (contact.PenetrationDepth < convex.collisionMargin + triangle.collisionMargin)
                {
                    state = CollisionState
                            .ExternalNear; //If it's emerged from the deep contact, we can go back to using the preferred GJK method.
                }

                contactList.Add(ref contact);
            }

InnerSphere:

            if (TryInnerSphereContact(triangle, out contact))
            {
                contactList.Add(ref contact);
            }

            if (contactList.Count > 0)
            {
                return(true);
            }

            state = CollisionState.ExternalSeparated;
            return(false);
        }
Beispiel #9
0
        private bool DoPlaneTest(TriangleShape triangle, out TinyStructList <ContactData> contactList)
        {
            //Find closest point between object and plane.
            Vector3 reverseNormal;
            Vector3 ab, ac;

            Vector3.Subtract(ref triangle.vB, ref triangle.vA, out ab);
            Vector3.Subtract(ref triangle.vC, ref triangle.vA, out ac);
            Vector3.Cross(ref ac, ref ab, out reverseNormal);
            //Convex position dot normal is ALWAYS zero.  The thing to look at is the plane's 'd'.
            //If the distance along the normal is positive, then the convex is 'behind' that normal.
            float dotA;

            Vector3.Dot(ref triangle.vA, ref reverseNormal, out dotA);

            contactList = new TinyStructList <ContactData>();
            switch (triangle.sidedness)
            {
            case TriangleSidedness.DoubleSided:
                if (dotA < 0)
                {
                    //The reverse normal is pointing towards the convex.
                    //It needs to point away from the convex so that the direction
                    //will get the proper extreme point.
                    Vector3.Negate(ref reverseNormal, out reverseNormal);
                    dotA = -dotA;
                }

                break;

            case TriangleSidedness.Clockwise:

                break;

            case TriangleSidedness.Counterclockwise:

                //The reverse normal is pointing towards the convex.
                //It needs to point away from the convex so that the direction
                //will get the proper extreme point.
                Vector3.Negate(ref reverseNormal, out reverseNormal);
                dotA = -dotA;
                break;
            }

            Vector3 extremePoint;

            convex.GetLocalExtremePointWithoutMargin(ref reverseNormal, out extremePoint);


            //See if the extreme point is within the face or not.
            //It might seem like the easy "depth" test should come first, since a barycentric
            //calculation takes a bit more time.  However, transferring from plane to depth is 'rare'
            //(like all transitions), and putting this test here is logically closer to its requirements'
            //computation.

            if (GetVoronoiRegion(triangle, ref extremePoint) != VoronoiRegion.ABC)
            {
                state = CollisionState.ExternalSeparated;
                return(DoExternalSeparated(triangle, out contactList));
            }


            float dotE;

            Vector3.Dot(ref extremePoint, ref reverseNormal, out dotE);
            float t = (dotA - dotE) / reverseNormal.LengthSquared();


            Vector3 offset;

            Vector3.Multiply(ref reverseNormal, t, out offset);

            //Compare the distance from the plane to the convex object.
            float distanceSquared = offset.LengthSquared();

            float marginSum = triangle.collisionMargin + convex.collisionMargin;

            //TODO: Could just normalize early and avoid computing point plane before it's necessary.
            //Exposes a sqrt but...
            if (t <= 0 || distanceSquared < marginSum * marginSum)
            {
                //The convex object is in the margin of the plane.
                //All that's left is to create the contact.


                ContactData contact = new ContactData();
                //Displacement is from A to B.  point = A + t * AB, where t = marginA / margin.
                if (marginSum > Toolbox.Epsilon)                                                            //This can be zero! It would cause a NaN is unprotected.
                {
                    Vector3.Multiply(ref offset, convex.collisionMargin / marginSum, out contact.Position); //t * AB
                }
                else
                {
                    contact.Position = new Vector3();
                }

                Vector3.Add(ref extremePoint, ref contact.Position, out contact.Position); //A + t * AB.

                float normalLength = reverseNormal.Length();
                Vector3.Divide(ref reverseNormal, normalLength, out contact.Normal);
                float distance = normalLength * t;


                contact.PenetrationDepth = marginSum - distance;

                if (contact.PenetrationDepth > marginSum)
                {
                    //Check to see if the inner sphere is touching the plane.
                    //This does not override other tests; there can be more than one contact from a single triangle.

                    ContactData alternateContact;
                    if (TryInnerSphereContact(triangle, out alternateContact)
                        ) // && alternateContact.PenetrationDepth > contact.PenetrationDepth)
                    {
                        contactList.Add(ref alternateContact);
                    }

                    //The convex object is stuck deep in the plane!
                    //The most problematic case for this is when
                    //an object is right on top of a cliff.
                    //The lower, vertical triangle may occasionally detect
                    //a contact with the object, but would compute an extremely
                    //deep depth if the normal plane test was used.


                    //Verify that the depth is correct by trying another approach.
                    CollisionState previousState = state;
                    state = CollisionState.ExternalNear;
                    TinyStructList <ContactData> alternateContacts;
                    if (DoExternalNear(triangle, out alternateContacts))
                    {
                        alternateContacts.Get(0, out alternateContact);
                        if (alternateContact.PenetrationDepth + .01f < contact.PenetrationDepth
                            ) //Bias against the subtest's result, since the plane version will probably have a better position.
                        {
                            //It WAS a bad contact.
                            contactList.Add(ref alternateContact);
                            //DoDeepContact (which can be called from within DoExternalNear) can generate two contacts, but the second contact would just be an inner sphere (which we already generated).
                            //DoExternalNear can only generate one contact.  So we only need the first contact!
                            //TODO: This is a fairly fragile connection between the two stages.  Consider robustifying. (Also, the TryInnerSphereContact is done twice! This process is very rare for marginful pairs, though)
                        }
                        else
                        {
                            //Well, it really is just that deep.
                            contactList.Add(ref contact);
                            state = previousState;
                        }
                    }
                    else
                    {
                        //If the external near test finds that there was no collision at all,
                        //just return to plane testing.  If the point turns up outside the face region
                        //next time, the system will adapt.
                        state = previousState;
                        return(false);
                    }
                }
                else
                {
                    contactList.Add(ref contact);
                }

                return(true);
            }

            return(false);
        }
 //Relies on the triangle being located in the local space of the convex object.  The convex transform is used to transform the
 //contact points back from the convex's local space into world space.
 ///<summary>
 /// Generates a contact between the triangle and convex.
 ///</summary>
 ///<param name="contactList">Contact between the shapes, if any.</param>
 ///<returns>Whether or not the shapes are colliding.</returns>
 public abstract bool GenerateContactCandidate(out TinyStructList<ContactData> contactList);
Beispiel #11
0
        private bool DoExternalNear(TriangleShape triangle, out TinyStructList <ContactData> contactList)
        {
            Vector3 closestA, closestB;


            //Don't bother trying to do any clever caching.  The continually transforming simplex makes it very rarely useful.
            //TODO: Initialize the simplex of the GJK method using the 'true' center of the triangle.
            //If left unmodified, the simplex that is used in GJK will just be a point at 0,0,0, which of course is at the origin.
            //This causes an instant-out, always.  Not good!
            //By giving the contributing simplex the average centroid, it has a better guess.
            Vector3 triangleCentroid;

            Vector3.Add(ref triangle.vA, ref triangle.vB, out triangleCentroid);
            Vector3.Add(ref triangleCentroid, ref triangle.vC, out triangleCentroid);
            Vector3.Multiply(ref triangleCentroid, .33333333f, out triangleCentroid);

            CachedSimplex initialSimplex = new CachedSimplex
            {
                State = SimplexState.Point, LocalSimplexB = { A = triangleCentroid }
            };

            if (GJKToolbox.GetClosestPoints(convex, triangle, ref Toolbox.RigidIdentity, ref Toolbox.RigidIdentity,
                                            ref initialSimplex, out closestA, out closestB))
            {
                state = CollisionState.Deep;
                return(DoDeepContact(triangle, out contactList));
            }

            Vector3 displacement;

            Vector3.Subtract(ref closestB, ref closestA, out displacement);
            float distanceSquared = displacement.LengthSquared();
            float margin          = convex.collisionMargin + triangle.collisionMargin;

            contactList = new TinyStructList <ContactData>();
            if (distanceSquared < margin * margin)
            {
                //Try to generate a contact.
                ContactData contact = new ContactData();

                //Determine if the normal points in the appropriate direction given the sidedness of the triangle.
                if (triangle.sidedness != TriangleSidedness.DoubleSided)
                {
                    Vector3 triangleNormal, ab, ac;
                    Vector3.Subtract(ref triangle.vB, ref triangle.vA, out ab);
                    Vector3.Subtract(ref triangle.vC, ref triangle.vA, out ac);
                    Vector3.Cross(ref ab, ref ac, out triangleNormal);
                    float dot;
                    Vector3.Dot(ref triangleNormal, ref displacement, out dot);
                    if (triangle.sidedness == TriangleSidedness.Clockwise && dot > 0)
                    {
                        return(false);
                    }

                    if (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0)
                    {
                        return(false);
                    }
                }


                //Displacement is from A to B.  point = A + t * AB, where t = marginA / margin.
                if (margin > Toolbox.Epsilon)                                                                  //This can be zero! It would cause a NaN if unprotected.
                {
                    Vector3.Multiply(ref displacement, convex.collisionMargin / margin, out contact.Position); //t * AB
                }
                else
                {
                    contact.Position = new Vector3();
                }

                Vector3.Add(ref closestA, ref contact.Position, out contact.Position); //A + t * AB.


                contact.Normal = displacement;
                float distance = (float)Math.Sqrt(distanceSquared);
                Vector3.Divide(ref contact.Normal, distance, out contact.Normal);
                contact.PenetrationDepth = margin - distance;


                contactList.Add(ref contact);
                TryToEscape(triangle, ref contact.Position);
                return(true);
            }

            //Too far to make a contact- move back to separation.
            state = CollisionState.ExternalSeparated;
            return(false);
        }
        private bool DoPlaneTest(out TinyStructList<ContactData> contactList)
        {


            //Find closest point between object and plane.
            Vector3 reverseNormal;
            Vector3 ab, ac;
            Vector3.Subtract(ref triangle.vB, ref triangle.vA, out ab);
            Vector3.Subtract(ref triangle.vC, ref triangle.vA, out ac);
            Vector3.Cross(ref ac, ref ab, out reverseNormal);
            //Convex position dot normal is ALWAYS zero.  The thing to look at is the plane's 'd'.
            //If the distance along the normal is positive, then the convex is 'behind' that normal.
            float dotA;
            Vector3.Dot(ref triangle.vA, ref reverseNormal, out dotA);

            contactList = new TinyStructList<ContactData>();
            switch (triangle.sidedness)
            {
                case TriangleSidedness.DoubleSided:
                    if (dotA < 0)
                    {
                        //The reverse normal is pointing towards the convex.
                        //It needs to point away from the convex so that the direction
                        //will get the proper extreme point.
                        Vector3.Negate(ref reverseNormal, out reverseNormal);
                        dotA = -dotA;
                    }
                    break;
                case TriangleSidedness.Clockwise:
                    //if (dotA < 0)
                    //{
                    //    //The reverse normal is pointing towards the convex.
                    //    return false;
                    //}
                    break;
                case TriangleSidedness.Counterclockwise:
                    //if (dotA > 0)
                    //{
                    //    //The reverse normal is pointing away from the convex.
                    //    return false;
                    //}

                    //The reverse normal is pointing towards the convex.
                    //It needs to point away from the convex so that the direction
                    //will get the proper extreme point.
                    Vector3.Negate(ref reverseNormal, out reverseNormal);
                    dotA = -dotA;
                    break;
            }
            Vector3 extremePoint;
            convex.GetLocalExtremePointWithoutMargin(ref reverseNormal, out extremePoint);


            //See if the extreme point is within the face or not.
            //It might seem like the easy "depth" test should come first, since a barycentric
            //calculation takes a bit more time.  However, transferring from plane to depth is 'rare' 
            //(like all transitions), and putting this test here is logically closer to its requirements'
            //computation.

            if (GetVoronoiRegion(ref extremePoint) != VoronoiRegion.ABC)
            {
                state = CollisionState.ExternalSeparated;
                return DoExternalSeparated(out contactList);
            }



            float dotE;
            Vector3.Dot(ref extremePoint, ref reverseNormal, out dotE);
            float t = (dotA - dotE) / reverseNormal.LengthSquared();



            Vector3 offset;
            Vector3.Multiply(ref reverseNormal, t, out offset);

            //Compare the distance from the plane to the convex object.
            float distanceSquared = offset.LengthSquared();

            float marginSum = triangle.collisionMargin + convex.collisionMargin;
            //TODO: Could just normalize early and avoid computing point plane before it's necessary.  
            //Exposes a sqrt but...
            if (t <= 0 || distanceSquared < marginSum * marginSum)
            {
                //The convex object is in the margin of the plane.
                //All that's left is to create the contact.


                var contact = new ContactData();
                //Displacement is from A to B.  point = A + t * AB, where t = marginA / margin.
                if (marginSum > Toolbox.Epsilon) //This can be zero! It would cause a NaN is unprotected.
                    Vector3.Multiply(ref offset, convex.collisionMargin / marginSum, out contact.Position); //t * AB
                else contact.Position = new Vector3();
                Vector3.Add(ref extremePoint, ref contact.Position, out contact.Position); //A + t * AB.

                float normalLength = reverseNormal.Length();
                Vector3.Divide(ref reverseNormal, normalLength, out contact.Normal);
                float distance = normalLength * t;



                contact.PenetrationDepth = marginSum - distance;

                if (contact.PenetrationDepth > marginSum)
                {
                    //Check to see if the inner sphere is touching the plane.
                    //This does not override other tests; there can be more than one contact from a single triangle.

                    ContactData alternateContact;
                    if (TryInnerSphereContact(out alternateContact))// && alternateContact.PenetrationDepth > contact.PenetrationDepth)
                    {
                        contactList.Add(ref alternateContact);
                    }

                    //The convex object is stuck deep in the plane!
                    //The most problematic case for this is when
                    //an object is right on top of a cliff.
                    //The lower, vertical triangle may occasionally detect
                    //a contact with the object, but would compute an extremely
                    //deep depth if the normal plane test was used.




                    //Verify that the depth is correct by trying another approach.
                    CollisionState previousState = state;
                    state = CollisionState.ExternalNear;
                    TinyStructList<ContactData> alternateContacts;
                    if (DoExternalNear(out alternateContacts))
                    {
                        alternateContacts.Get(0, out alternateContact);
                        if (alternateContact.PenetrationDepth + .01f < contact.PenetrationDepth) //Bias against the subtest's result, since the plane version will probably have a better position.
                        {
                            //It WAS a bad contact.
                            contactList.Add(ref alternateContact);
                            //DoDeepContact (which can be called from within DoExternalNear) can generate two contacts, but the second contact would just be an inner sphere (which we already generated).
                            //DoExternalNear can only generate one contact.  So we only need the first contact!
                            //TODO: This is a fairly fragile connection between the two stages.  Consider robustifying. (Also, the TryInnerSphereContact is done twice! This process is very rare for marginful pairs, though)
                        }
                        else
                        {
                            //Well, it really is just that deep.
                            contactList.Add(ref contact);
                            state = previousState;
                        }
                    }
                    else
                    {
                        //If the external near test finds that there was no collision at all, 
                        //just return to plane testing.  If the point turns up outside the face region
                        //next time, the system will adapt.
                        state = previousState;
                        return false;
                    }
                }
                else
                {
                    contactList.Add(ref contact);
                }
                return true;

            }
            return false;


        }
        //Relies on the triangle being located in the local space of the convex object.  The convex transform is used to transform the
        //contact points back from the convex's local space into world space.
        ///<summary>
        /// Generates a contact between the triangle and convex.
        ///</summary>
        ///<param name="contactList">Contact between the shapes, if any.</param>
        ///<returns>Whether or not the shapes are colliding.</returns>
        public override bool GenerateContactCandidate(out TinyStructList<ContactData> contactList)
        {
            contactList = new TinyStructList<ContactData>();

            Vector3 ab, ac;
            Vector3.Subtract(ref triangle.vB, ref triangle.vA, out ab);
            Vector3.Subtract(ref triangle.vC, ref triangle.vA, out ac);
            Vector3 triangleNormal;
            Vector3.Cross(ref ab, ref ac, out triangleNormal);
            if (triangleNormal.LengthSquared() < Toolbox.Epsilon * .01f)
            {
                //If the triangle is degenerate, use the offset between its center and the sphere.
                Vector3.Add(ref triangle.vA, ref triangle.vB, out triangleNormal);
                Vector3.Add(ref triangleNormal, ref triangle.vC, out triangleNormal);
                Vector3.Multiply(ref triangleNormal, 1 / 3f, out triangleNormal);
                if (triangleNormal.LengthSquared() < Toolbox.Epsilon * .01f)
                    triangleNormal = Toolbox.UpVector; //Alrighty then! Pick a random direction.

            }

            float dot;
            Vector3.Dot(ref triangleNormal, ref triangle.vA, out dot);
            switch (triangle.sidedness)
            {
                case TriangleSidedness.DoubleSided:
                    if (dot < 0)
                        Vector3.Negate(ref triangleNormal, out triangleNormal); //Normal must face outward.
                    break;
                case TriangleSidedness.Clockwise:
                    if (dot > 0)
                        return false; //Wrong side, can't have a contact pointing in a reasonable direction.
                    break;
                case TriangleSidedness.Counterclockwise:
                    if (dot < 0)
                        return false; //Wrong side, can't have a contact pointing in a reasonable direction.
                    break;

            }

            Vector3 closestPoint;
            //Could optimize this process a bit.  The 'point' being compared is always zero.  Additionally, since the triangle normal is available,
            //there is a little extra possible optimization.
            lastRegion = Toolbox.GetClosestPointOnTriangleToPoint(ref triangle.vA, ref triangle.vB, ref triangle.vC, ref Toolbox.ZeroVector, out closestPoint);
            float lengthSquared = closestPoint.LengthSquared();
            float marginSum = triangle.collisionMargin + sphere.collisionMargin;

            if (lengthSquared <= marginSum * marginSum)
            {
                var contact = new ContactData();
                if (lengthSquared < Toolbox.Epsilon)
                {
                    //Super close to the triangle.  Normalizing would be dangerous.

                    Vector3.Negate(ref triangleNormal, out contact.Normal);
                    contact.Normal.Normalize();
                    contact.PenetrationDepth = marginSum;
                    contactList.Add(ref contact);
                    return true;
                }

                lengthSquared = (float)Math.Sqrt(lengthSquared);
                Vector3.Divide(ref closestPoint, lengthSquared, out contact.Normal);
                contact.PenetrationDepth = marginSum - lengthSquared;
                contact.Position = closestPoint;
                contactList.Add(ref contact);
                return true;

            }
            return false;
        }
        private bool DoExternalNear(out TinyStructList<ContactData> contactList)
        {

            Vector3 closestA, closestB;


            //Don't bother trying to do any clever caching.  The continually transforming simplex makes it very rarely useful.
            //TODO: Initialize the simplex of the GJK method using the 'true' center of the triangle.
            //If left unmodified, the simplex that is used in GJK will just be a point at 0,0,0, which of course is at the origin.
            //This causes an instant-out, always.  Not good!
            //By giving the contributing simplex the average centroid, it has a better guess.
            Vector3 triangleCentroid;
            Vector3.Add(ref triangle.vA, ref triangle.vB, out triangleCentroid);
            Vector3.Add(ref triangleCentroid, ref triangle.vC, out triangleCentroid);
            Vector3.Multiply(ref triangleCentroid, .33333333f, out triangleCentroid);

            var initialSimplex = new CachedSimplex { State = SimplexState.Point, LocalSimplexB = { A = triangleCentroid } };
            if (GJKToolbox.GetClosestPoints(convex, triangle, ref Toolbox.RigidIdentity, ref Toolbox.RigidIdentity, ref initialSimplex, out closestA, out closestB))
            {
                state = CollisionState.Deep;
                return DoDeepContact(out contactList);
            }
            Vector3 displacement;
            Vector3.Subtract(ref closestB, ref closestA, out displacement);
            float distanceSquared = displacement.LengthSquared();
            float margin = convex.collisionMargin + triangle.collisionMargin;

            contactList = new TinyStructList<ContactData>();
            if (distanceSquared < margin * margin)
            {
                //Try to generate a contact.
                var contact = new ContactData();

                //Determine if the normal points in the appropriate direction given the sidedness of the triangle.
                if (triangle.sidedness != TriangleSidedness.DoubleSided)
                {
                    Vector3 triangleNormal, ab, ac;
                    Vector3.Subtract(ref triangle.vB, ref triangle.vA, out ab);
                    Vector3.Subtract(ref triangle.vC, ref triangle.vA, out ac);
                    Vector3.Cross(ref ab, ref ac, out triangleNormal);
                    float dot;
                    Vector3.Dot(ref triangleNormal, ref displacement, out dot);
                    if (triangle.sidedness == TriangleSidedness.Clockwise && dot > 0)
                        return false;
                    if (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0)
                        return false;
                }


                //Displacement is from A to B.  point = A + t * AB, where t = marginA / margin.
                if (margin > Toolbox.Epsilon) //This can be zero! It would cause a NaN if unprotected.
                    Vector3.Multiply(ref displacement, convex.collisionMargin / margin, out contact.Position); //t * AB
                else contact.Position = new Vector3();
                Vector3.Add(ref closestA, ref contact.Position, out contact.Position); //A + t * AB.



                contact.Normal = displacement;
                float distance = (float)Math.Sqrt(distanceSquared);
                Vector3.Divide(ref contact.Normal, distance, out contact.Normal);
                contact.PenetrationDepth = margin - distance;



                contactList.Add(ref contact);
                TryToEscape(ref contact.Position);
                return true;

            }
            //Too far to make a contact- move back to separation.
            state = CollisionState.ExternalSeparated;
            return false;
        }
        public override void Update(float dt)
        {

            //Now, generate a contact between the two shapes.
            float distance;
            Vector3 axis;
            var manifold = new TinyStructList<BoxContactData>();
            if (BoxBoxCollider.AreBoxesColliding(boxA.Shape, boxB.Shape, ref boxA.worldTransform, ref boxB.worldTransform, out distance, out axis, out manifold))
            {
                Vector3.Negate(ref axis, out axis);
                TinyList<int> toRemove = new TinyList<int>();
                BoxContactData data;
                for (int i = 0; i < contacts.count; i++)
                {
                    bool found = false;
                    for (int j = manifold.Count - 1; j >= 0; j--)
                    {
                        manifold.Get(j, out data);
                        if (contacts.Elements[i].Id == data.Id)
                        {
                            found = true;
                            //Update contact...
                            contacts.Elements[i].Position = data.Position;
                            contacts.Elements[i].PenetrationDepth = -data.Depth;
                            contacts.Elements[i].Normal = axis;
                            //Remove manifold entry
                            manifold.RemoveAt(j);
                            break;
                        }
                    }
                    if (!found)
                    {//No match found
                        toRemove.Add(i);
                    }
                }

                ////Go through the indices to remove.
                ////For each one, replace the removal index with a contact in the new manifold.
                //int removalIndex;
                //for (removalIndex = toRemove.count - 1; removalIndex >= 0 && manifold.count > 0; removalIndex--)
                //{
                //    int indexToReplace = toRemove[removalIndex];
                //    toRemove.RemoveAt(removalIndex);
                //    manifold.Get(manifold.count - 1, out data);
                //    //Update contact...
                //    contacts.Elements[indexToReplace].Position = data.Position;
                //    contacts.Elements[indexToReplace].PenetrationDepth = -data.Depth;
                //    contacts.Elements[indexToReplace].Normal = axis;
                //    contacts.Elements[indexToReplace].Id = data.Id;
                //    //Remove manifold entry
                //    manifold.RemoveAt(manifold.count - 1);

                //}

                //Alright, we ran out of contacts to replace (if, in fact, toRemove isn't empty now).  Just remove the remainder.
                //toRemove is sorted by increasing index.  Go backwards along it so that the indices are valid all the way through.
                for (int i = toRemove.Count - 1; i >= 0; i--)
                    Remove(toRemove[i]);

                //Add new contacts.
                for (int i = 0; i < manifold.Count; i++)
                {
                    manifold.Get(i, out data);
                    ContactData newContact = new ContactData();
                    newContact.Position = data.Position;
                    newContact.PenetrationDepth = -data.Depth;
                    newContact.Normal = axis;
                    newContact.Id = data.Id;

                    Add(ref newContact);
                }
            }
            else
            {
                //Not colliding, so get rid of it.
                for (int i = contacts.count - 1; i >= 0; i--)
                {
                    Remove(i);
                }
            }
        }
Beispiel #16
0
        private bool DoDeepContact(out TinyStructList <ContactData> contactList)
        {
            //Find the origin to triangle center offset.
            Vector3 center;

            Vector3.Add(ref triangle.vA, ref triangle.vB, out center);
            Vector3.Add(ref center, ref triangle.vC, out center);
            Vector3.Multiply(ref center, 1f / 3f, out center);

            ContactData contact;

            contactList = new TinyStructList <ContactData>();

            if (MPRToolbox.AreLocalShapesOverlapping(convex, triangle, ref center, ref Toolbox.RigidIdentity))
            {
                float dot;


                Vector3 triangleNormal, ab, ac;
                Vector3.Subtract(ref triangle.vB, ref triangle.vA, out ab);
                Vector3.Subtract(ref triangle.vC, ref triangle.vA, out ac);
                Vector3.Cross(ref ab, ref ac, out triangleNormal);
                float lengthSquared = triangleNormal.LengthSquared();
                if (lengthSquared < Toolbox.Epsilon * .01f)
                {
                    //Degenerate triangle! That's no good.
                    //Just use the direction pointing from A to B, "B" being the triangle.  That direction is center - origin, or just center.
                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref center, out contact.PenetrationDepth, out contact.Normal, out contact.Position);
                }
                else
                {
                    //Normalize the normal.
                    Vector3.Divide(ref triangleNormal, (float)Math.Sqrt(lengthSquared), out triangleNormal);


                    ////The first direction to check is one of the triangle's edge normals.  Choose the one that is most aligned with the offset from A to B.
                    ////Project the direction onto the triangle plane.
                    //Vector3.Dot(ref triangleNormal, ref center, out dot);
                    //Vector3 trianglePlaneDirection;
                    //Vector3.Multiply(ref triangleNormal, dot, out trianglePlaneDirection);
                    //Vector3.Subtract(ref trianglePlaneDirection, ref center, out trianglePlaneDirection);

                    ////To find out which edge to use, compute which region the direction is in.
                    ////This is done by constructing three planes which segment the triangle into three sub-triangles.

                    ////These planes are defined by A, origin, center; B, origin, center; C, origin, center.
                    ////The plane tests against the direction can be reordered to:
                    ////(center x direction) * A
                    ////(center x direction) * B
                    ////(center x direction) * C
                    //Vector3 OxD;
                    //Vector3.Cross(ref trianglePlaneDirection, ref center, out OxD);
                    //Vector3 p;

                    //float dotA, dotB, dotC;
                    //Vector3.Dot(ref triangle.vA, ref OxD, out dotA);
                    //Vector3.Dot(ref triangle.vB, ref OxD, out dotB);
                    //Vector3.Dot(ref triangle.vC, ref OxD, out dotC);

                    //if (dotA >= 0 && dotB <= 0)
                    //{
                    //    //Direction is in the AB edge zone.
                    //    //Compute the edge normal using AB x (AO x AB).
                    //    Vector3 AB, AO;
                    //    Vector3.Subtract(ref triangle.vB, ref triangle.vA, out AB);
                    //    Vector3.Subtract(ref center, ref triangle.vA, out AO);
                    //    Vector3.Cross(ref AO, ref AB, out p);
                    //    Vector3.Cross(ref AB, ref p, out trianglePlaneDirection);
                    //}
                    //else if (dotB >= 0 && dotC <= 0)
                    //{
                    //    //Direction is in the BC edge zone.
                    //    //Compute the edge normal using BC x (BO x BC).
                    //    Vector3 BC, BO;
                    //    Vector3.Subtract(ref triangle.vC, ref triangle.vB, out BC);
                    //    Vector3.Subtract(ref center, ref triangle.vB, out BO);
                    //    Vector3.Cross(ref BO, ref BC, out p);
                    //    Vector3.Cross(ref BC, ref p, out trianglePlaneDirection);

                    //}
                    //else // dotC > 0 && dotA < 0
                    //{
                    //    //Direction is in the CA edge zone.
                    //    //Compute the edge normal using CA x (CO x CA).
                    //    Vector3 CA, CO;
                    //    Vector3.Subtract(ref triangle.vA, ref triangle.vC, out CA);
                    //    Vector3.Subtract(ref center, ref triangle.vC, out CO);
                    //    Vector3.Cross(ref CO, ref CA, out p);
                    //    Vector3.Cross(ref CA, ref p, out trianglePlaneDirection);
                    //}



                    //dot = trianglePlaneDirection.LengthSquared();
                    //if (dot > Toolbox.Epsilon)
                    //{
                    //    Vector3.Divide(ref trianglePlaneDirection, (float)Math.Sqrt(dot), out trianglePlaneDirection);
                    //    MPRTesting.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref trianglePlaneDirection, out contact.PenetrationDepth, out contact.Normal);
                    //    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    //    Vector3.Dot(ref triangleNormal, ref contact.Normal, out dot);
                    //    if ((triangle.sidedness == TriangleSidedness.Clockwise && dot > 0) || (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0))
                    //    {
                    //        //Normal was facing the wrong way.
                    //        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                    //        Vector3 previousNormal = contact.Normal;
                    //        Vector3.Dot(ref contact.Normal, ref triangleNormal, out dot);

                    //        Vector3.Multiply(ref contact.Normal, dot, out p);
                    //        Vector3.Subtract(ref contact.Normal, ref p, out contact.Normal);
                    //        float length = contact.Normal.LengthSquared();
                    //        if (length > Toolbox.Epsilon)
                    //        {
                    //            //Renormalize the corrected normal.
                    //            Vector3.Divide(ref contact.Normal, (float)Math.Sqrt(length), out contact.Normal);
                    //            Vector3.Dot(ref contact.Normal, ref previousNormal, out dot);
                    //            contact.PenetrationDepth *= dot;
                    //        }
                    //        else
                    //        {
                    //            contact.PenetrationDepth = float.MaxValue;
                    //            contact.Normal = new Vector3();
                    //        }
                    //    }
                    //}
                    //else
                    //{
                    //    contact.PenetrationDepth = float.MaxValue;
                    //    contact.Normal = new Vector3();
                    //}

                    //TODO: This tests all three edge axes with a full MPR raycast.  That's not really necessary; the correct edge normal should be discoverable, resulting in a single MPR raycast.

                    //Find the edge directions that will be tested with MPR.
                    Vector3 AO, BO, CO;
                    Vector3 AB, BC, CA;
                    Vector3.Subtract(ref center, ref triangle.vA, out AO);
                    Vector3.Subtract(ref center, ref triangle.vB, out BO);
                    Vector3.Subtract(ref center, ref triangle.vC, out CO);
                    Vector3.Subtract(ref triangle.vB, ref triangle.vA, out AB);
                    Vector3.Subtract(ref triangle.vC, ref triangle.vB, out BC);
                    Vector3.Subtract(ref triangle.vA, ref triangle.vC, out CA);


                    //We don't have to worry about degenerate triangles here because we've already handled that possibility above.
                    Vector3 ABnormal, BCnormal, CAnormal;

                    //Project the center onto the edge to find the direction from the center to the edge AB.
                    Vector3.Dot(ref AO, ref AB, out dot);
                    Vector3.Multiply(ref AB, dot / AB.LengthSquared(), out ABnormal);
                    Vector3.Subtract(ref AO, ref ABnormal, out ABnormal);
                    ABnormal.Normalize();

                    //Project the center onto the edge to find the direction from the center to the edge BC.
                    Vector3.Dot(ref BO, ref BC, out dot);
                    Vector3.Multiply(ref BC, dot / BC.LengthSquared(), out BCnormal);
                    Vector3.Subtract(ref BO, ref BCnormal, out BCnormal);
                    BCnormal.Normalize();

                    //Project the center onto the edge to find the direction from the center to the edge BC.
                    Vector3.Dot(ref CO, ref CA, out dot);
                    Vector3.Multiply(ref CA, dot / CA.LengthSquared(), out CAnormal);
                    Vector3.Subtract(ref CO, ref CAnormal, out CAnormal);
                    CAnormal.Normalize();


                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref ABnormal, out contact.PenetrationDepth, out contact.Normal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3.Dot(ref triangleNormal, ref contact.Normal, out dot);
                    if ((triangle.sidedness == TriangleSidedness.Clockwise && dot > 0) || (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0))
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        Vector3 previousNormal = contact.Normal;
                        Vector3.Dot(ref contact.Normal, ref triangleNormal, out dot);

                        Vector3 p;
                        Vector3.Multiply(ref contact.Normal, dot, out p);
                        Vector3.Subtract(ref contact.Normal, ref p, out contact.Normal);
                        float length = contact.Normal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3.Divide(ref contact.Normal, (float)Math.Sqrt(length), out contact.Normal);
                            Vector3.Dot(ref contact.Normal, ref previousNormal, out dot);
                            contact.PenetrationDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal           = new Vector3();
                        }
                    }



                    Vector3 candidateNormal;
                    float   candidateDepth;

                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref BCnormal, out candidateDepth, out candidateNormal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3.Dot(ref triangleNormal, ref candidateNormal, out dot);
                    if ((triangle.sidedness == TriangleSidedness.Clockwise && dot > 0) || (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0))
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        Vector3 previousNormal = candidateNormal;
                        Vector3.Dot(ref candidateNormal, ref triangleNormal, out dot);

                        Vector3 p;
                        Vector3.Multiply(ref candidateNormal, dot, out p);
                        Vector3.Subtract(ref candidateNormal, ref p, out candidateNormal);
                        float length = candidateNormal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3.Divide(ref candidateNormal, (float)Math.Sqrt(length), out candidateNormal);
                            Vector3.Dot(ref candidateNormal, ref previousNormal, out dot);
                            candidateDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal           = new Vector3();
                        }
                    }
                    if (candidateDepth < contact.PenetrationDepth)
                    {
                        contact.Normal           = candidateNormal;
                        contact.PenetrationDepth = candidateDepth;
                    }



                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref CAnormal, out candidateDepth, out candidateNormal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3.Dot(ref triangleNormal, ref candidateNormal, out dot);
                    if ((triangle.sidedness == TriangleSidedness.Clockwise && dot > 0) || (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0))
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        Vector3 previousNormal = candidateNormal;
                        Vector3.Dot(ref candidateNormal, ref triangleNormal, out dot);

                        Vector3 p;
                        Vector3.Multiply(ref candidateNormal, dot, out p);
                        Vector3.Subtract(ref candidateNormal, ref p, out candidateNormal);
                        float length = candidateNormal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3.Divide(ref candidateNormal, (float)Math.Sqrt(length), out candidateNormal);
                            Vector3.Dot(ref candidateNormal, ref previousNormal, out dot);
                            candidateDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal           = new Vector3();
                        }
                    }
                    if (candidateDepth < contact.PenetrationDepth)
                    {
                        contact.Normal           = candidateNormal;
                        contact.PenetrationDepth = candidateDepth;
                    }



                    //Try the depth along the positive triangle normal.

                    //If it's clockwise, this direction is unnecessary (the resulting normal would be invalidated by the onesidedness of the triangle).
                    if (triangle.sidedness != TriangleSidedness.Clockwise)
                    {
                        MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref triangleNormal, out candidateDepth, out candidateNormal);
                        if (candidateDepth < contact.PenetrationDepth)
                        {
                            contact.Normal           = candidateNormal;
                            contact.PenetrationDepth = candidateDepth;
                        }
                    }

                    //Try the depth along the negative triangle normal.

                    //If it's counterclockwise, this direction is unnecessary (the resulting normal would be invalidated by the onesidedness of the triangle).
                    if (triangle.sidedness != TriangleSidedness.Counterclockwise)
                    {
                        Vector3.Negate(ref triangleNormal, out triangleNormal);
                        MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref triangleNormal, out candidateDepth, out candidateNormal);
                        if (candidateDepth < contact.PenetrationDepth)
                        {
                            contact.Normal           = candidateNormal;
                            contact.PenetrationDepth = candidateDepth;
                        }
                    }
                }



                MPRToolbox.RefinePenetration(convex, triangle, ref Toolbox.RigidIdentity, contact.PenetrationDepth, ref contact.Normal, out contact.PenetrationDepth, out contact.Normal, out contact.Position);

                //It's possible for the normal to still face the 'wrong' direction according to one sided triangles.
                if (triangle.sidedness != TriangleSidedness.DoubleSided)
                {
                    Vector3.Dot(ref triangleNormal, ref contact.Normal, out dot);
                    if (dot < 0)
                    {
                        return(false);
                    }
                }


                ////The local casting can optionally continue.  Eventually, it will converge to the local minimum.
                //int optimizingCount = 0;
                //while (true)
                //{

                //    MPRTesting.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref contact.Normal, out candidateDepth, out candidateNormal);
                //    if (contact.PenetrationDepth - candidateDepth <= Toolbox.BigEpsilon ||
                //        ++optimizingCount < 4)
                //    {
                //        //If we've reached the end due to convergence, the normal will be extremely close to correct (if not 100% correct).
                //        //The candidateDepth computed is the previous contact normal's depth.
                //        //The reason why the previous normal is kept is that the last raycast computed the depth for that normal, not the new normal.
                //        contact.PenetrationDepth = candidateDepth;
                //        break;
                //    }


                //    contact.PenetrationDepth = candidateDepth;
                //    contact.Normal = candidateNormal;
                //}

                //Correct the penetration depth.
                //MPRTesting.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref contact.Normal, out contact.PenetrationDepth, out center); //Center is just a trash variable now.

                contact.Id = -1;

                if (contact.PenetrationDepth < convex.collisionMargin + triangle.collisionMargin)
                {
                    state = CollisionState.ExternalNear; //If it's emerged from the deep contact, we can go back to using the preferred GJK method.
                }
                contactList.Add(ref contact);
            }



            if (TryInnerSphereContact(out contact))
            {
                contactList.Add(ref contact);
            }
            if (contactList.count > 0)
            {
                return(true);
            }

            state = CollisionState.ExternalSeparated;
            return(false);
        }
 //Relies on the triangle being located in the local space of the convex object.  The convex transform is used to transform the
 //contact points back from the convex's local space into world space.
 ///<summary>
 /// Generates a contact between the triangle and convex.
 ///</summary>
 /// <param name="triangle">Triangle to test</param>
 ///<param name="contactList">Contact between the shapes, if any.</param>
 ///<returns>Whether or not the shapes are colliding.</returns>
 public abstract bool GenerateContactCandidates(TriangleShape triangle, out TinyStructList<ContactData> contactList);
 //Relies on the triangle being located in the local space of the convex object.  The convex transform is used to transform the
 //contact points back from the convex's local space into world space.
 ///<summary>
 /// Generates a contact between the triangle and convex.
 ///</summary>
 ///<param name="contactList">Contact between the shapes, if any.</param>
 ///<returns>Whether or not the shapes are colliding.</returns>
 public abstract bool GenerateContactCandidate(out TinyStructList <ContactData> contactList);
        private bool DoDeepContact(out TinyStructList<ContactData> contactList)
        {


            //Find the origin to triangle center offset.
            Vector3 center;
            Vector3.Add(ref triangle.vA, ref triangle.vB, out center);
            Vector3.Add(ref center, ref triangle.vC, out center);
            Vector3.Multiply(ref center, 1f / 3f, out center);

            ContactData contact;

            contactList = new TinyStructList<ContactData>();

            if (MPRToolbox.AreLocalShapesOverlapping(convex, triangle, ref center, ref Toolbox.RigidIdentity))
            {

                float dot;


                Vector3 triangleNormal, ab, ac;
                Vector3.Subtract(ref triangle.vB, ref triangle.vA, out ab);
                Vector3.Subtract(ref triangle.vC, ref triangle.vA, out ac);
                Vector3.Cross(ref ab, ref ac, out triangleNormal);
                float lengthSquared = triangleNormal.LengthSquared();
                if (lengthSquared < Toolbox.Epsilon * .01f)
                {
                    //Degenerate triangle! That's no good.
                    //Just use the direction pointing from A to B, "B" being the triangle.  That direction is center - origin, or just center.
                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref center, out contact.PenetrationDepth, out contact.Normal, out contact.Position);
                }
                else
                {
                    //Normalize the normal.
                    Vector3.Divide(ref triangleNormal, (float)Math.Sqrt(lengthSquared), out triangleNormal);


                    ////The first direction to check is one of the triangle's edge normals.  Choose the one that is most aligned with the offset from A to B.
                    ////Project the direction onto the triangle plane.
                    //Vector3.Dot(ref triangleNormal, ref center, out dot);
                    //Vector3 trianglePlaneDirection;
                    //Vector3.Multiply(ref triangleNormal, dot, out trianglePlaneDirection);
                    //Vector3.Subtract(ref trianglePlaneDirection, ref center, out trianglePlaneDirection);

                    ////To find out which edge to use, compute which region the direction is in.
                    ////This is done by constructing three planes which segment the triangle into three sub-triangles.

                    ////These planes are defined by A, origin, center; B, origin, center; C, origin, center.
                    ////The plane tests against the direction can be reordered to:
                    ////(center x direction) * A
                    ////(center x direction) * B
                    ////(center x direction) * C
                    //Vector3 OxD;
                    //Vector3.Cross(ref trianglePlaneDirection, ref center, out OxD);
                    //Vector3 p;

                    //float dotA, dotB, dotC;
                    //Vector3.Dot(ref triangle.vA, ref OxD, out dotA);
                    //Vector3.Dot(ref triangle.vB, ref OxD, out dotB);
                    //Vector3.Dot(ref triangle.vC, ref OxD, out dotC);

                    //if (dotA >= 0 && dotB <= 0)
                    //{
                    //    //Direction is in the AB edge zone.
                    //    //Compute the edge normal using AB x (AO x AB).
                    //    Vector3 AB, AO;
                    //    Vector3.Subtract(ref triangle.vB, ref triangle.vA, out AB);
                    //    Vector3.Subtract(ref center, ref triangle.vA, out AO);
                    //    Vector3.Cross(ref AO, ref AB, out p);
                    //    Vector3.Cross(ref AB, ref p, out trianglePlaneDirection);
                    //}
                    //else if (dotB >= 0 && dotC <= 0)
                    //{
                    //    //Direction is in the BC edge zone.
                    //    //Compute the edge normal using BC x (BO x BC).
                    //    Vector3 BC, BO;
                    //    Vector3.Subtract(ref triangle.vC, ref triangle.vB, out BC);
                    //    Vector3.Subtract(ref center, ref triangle.vB, out BO);
                    //    Vector3.Cross(ref BO, ref BC, out p);
                    //    Vector3.Cross(ref BC, ref p, out trianglePlaneDirection);

                    //}
                    //else // dotC > 0 && dotA < 0
                    //{
                    //    //Direction is in the CA edge zone.
                    //    //Compute the edge normal using CA x (CO x CA).
                    //    Vector3 CA, CO;
                    //    Vector3.Subtract(ref triangle.vA, ref triangle.vC, out CA);
                    //    Vector3.Subtract(ref center, ref triangle.vC, out CO);
                    //    Vector3.Cross(ref CO, ref CA, out p);
                    //    Vector3.Cross(ref CA, ref p, out trianglePlaneDirection);
                    //}



                    //dot = trianglePlaneDirection.LengthSquared();
                    //if (dot > Toolbox.Epsilon)
                    //{
                    //    Vector3.Divide(ref trianglePlaneDirection, (float)Math.Sqrt(dot), out trianglePlaneDirection);
                    //    MPRTesting.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref trianglePlaneDirection, out contact.PenetrationDepth, out contact.Normal);
                    //    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    //    Vector3.Dot(ref triangleNormal, ref contact.Normal, out dot);
                    //    if ((triangle.sidedness == TriangleSidedness.Clockwise && dot > 0) || (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0))
                    //    {
                    //        //Normal was facing the wrong way.
                    //        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                    //        Vector3 previousNormal = contact.Normal;
                    //        Vector3.Dot(ref contact.Normal, ref triangleNormal, out dot);

                    //        Vector3.Multiply(ref contact.Normal, dot, out p);
                    //        Vector3.Subtract(ref contact.Normal, ref p, out contact.Normal);
                    //        float length = contact.Normal.LengthSquared();
                    //        if (length > Toolbox.Epsilon)
                    //        {
                    //            //Renormalize the corrected normal.
                    //            Vector3.Divide(ref contact.Normal, (float)Math.Sqrt(length), out contact.Normal);
                    //            Vector3.Dot(ref contact.Normal, ref previousNormal, out dot);
                    //            contact.PenetrationDepth *= dot;
                    //        }
                    //        else
                    //        {
                    //            contact.PenetrationDepth = float.MaxValue;
                    //            contact.Normal = new Vector3();
                    //        }
                    //    }
                    //}
                    //else
                    //{
                    //    contact.PenetrationDepth = float.MaxValue;
                    //    contact.Normal = new Vector3();
                    //}

                    //TODO: This tests all three edge axes with a full MPR raycast.  That's not really necessary; the correct edge normal should be discoverable, resulting in a single MPR raycast.

                    //Find the edge directions that will be tested with MPR.
                    Vector3 AO, BO, CO;
                    Vector3 AB, BC, CA;
                    Vector3.Subtract(ref center, ref triangle.vA, out AO);
                    Vector3.Subtract(ref center, ref triangle.vB, out BO);
                    Vector3.Subtract(ref center, ref triangle.vC, out CO);
                    Vector3.Subtract(ref triangle.vB, ref triangle.vA, out AB);
                    Vector3.Subtract(ref triangle.vC, ref triangle.vB, out BC);
                    Vector3.Subtract(ref triangle.vA, ref triangle.vC, out CA);


                    //We don't have to worry about degenerate triangles here because we've already handled that possibility above.
                    Vector3 ABnormal, BCnormal, CAnormal;

                    //Project the center onto the edge to find the direction from the center to the edge AB.
                    Vector3.Dot(ref AO, ref AB, out dot);
                    Vector3.Multiply(ref AB, dot / AB.LengthSquared(), out ABnormal);
                    Vector3.Subtract(ref AO, ref ABnormal, out ABnormal);
                    ABnormal.Normalize();

                    //Project the center onto the edge to find the direction from the center to the edge BC.
                    Vector3.Dot(ref BO, ref BC, out dot);
                    Vector3.Multiply(ref BC, dot / BC.LengthSquared(), out BCnormal);
                    Vector3.Subtract(ref BO, ref BCnormal, out BCnormal);
                    BCnormal.Normalize();

                    //Project the center onto the edge to find the direction from the center to the edge BC.
                    Vector3.Dot(ref CO, ref CA, out dot);
                    Vector3.Multiply(ref CA, dot / CA.LengthSquared(), out CAnormal);
                    Vector3.Subtract(ref CO, ref CAnormal, out CAnormal);
                    CAnormal.Normalize();


                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref ABnormal, out contact.PenetrationDepth, out contact.Normal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3.Dot(ref triangleNormal, ref contact.Normal, out dot);
                    if ((triangle.sidedness == TriangleSidedness.Clockwise && dot > 0) || (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0))
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        Vector3 previousNormal = contact.Normal;
                        Vector3.Dot(ref contact.Normal, ref triangleNormal, out dot);

                        Vector3 p;
                        Vector3.Multiply(ref contact.Normal, dot, out p);
                        Vector3.Subtract(ref contact.Normal, ref p, out contact.Normal);
                        float length = contact.Normal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3.Divide(ref contact.Normal, (float)Math.Sqrt(length), out contact.Normal);
                            Vector3.Dot(ref contact.Normal, ref previousNormal, out dot);
                            contact.PenetrationDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal = new Vector3();
                        }
                    }



                    Vector3 candidateNormal;
                    float candidateDepth;

                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref BCnormal, out candidateDepth, out candidateNormal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3.Dot(ref triangleNormal, ref candidateNormal, out dot);
                    if ((triangle.sidedness == TriangleSidedness.Clockwise && dot > 0) || (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0))
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        Vector3 previousNormal = candidateNormal;
                        Vector3.Dot(ref candidateNormal, ref triangleNormal, out dot);

                        Vector3 p;
                        Vector3.Multiply(ref candidateNormal, dot, out p);
                        Vector3.Subtract(ref candidateNormal, ref p, out candidateNormal);
                        float length = candidateNormal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3.Divide(ref candidateNormal, (float)Math.Sqrt(length), out candidateNormal);
                            Vector3.Dot(ref candidateNormal, ref previousNormal, out dot);
                            candidateDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal = new Vector3();
                        }
                    }
                    if (candidateDepth < contact.PenetrationDepth)
                    {
                        contact.Normal = candidateNormal;
                        contact.PenetrationDepth = candidateDepth;
                    }



                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref CAnormal, out candidateDepth, out candidateNormal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3.Dot(ref triangleNormal, ref candidateNormal, out dot);
                    if ((triangle.sidedness == TriangleSidedness.Clockwise && dot > 0) || (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0))
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        Vector3 previousNormal = candidateNormal;
                        Vector3.Dot(ref candidateNormal, ref triangleNormal, out dot);

                        Vector3 p;
                        Vector3.Multiply(ref candidateNormal, dot, out p);
                        Vector3.Subtract(ref candidateNormal, ref p, out candidateNormal);
                        float length = candidateNormal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3.Divide(ref candidateNormal, (float)Math.Sqrt(length), out candidateNormal);
                            Vector3.Dot(ref candidateNormal, ref previousNormal, out dot);
                            candidateDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal = new Vector3();
                        }
                    }
                    if (candidateDepth < contact.PenetrationDepth)
                    {
                        contact.Normal = candidateNormal;
                        contact.PenetrationDepth = candidateDepth;
                    }



                    //Try the depth along the positive triangle normal.

                    //If it's clockwise, this direction is unnecessary (the resulting normal would be invalidated by the onesidedness of the triangle).
                    if (triangle.sidedness != TriangleSidedness.Clockwise)
                    {
                        MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref triangleNormal, out candidateDepth, out candidateNormal);
                        if (candidateDepth < contact.PenetrationDepth)
                        {
                            contact.Normal = candidateNormal;
                            contact.PenetrationDepth = candidateDepth;
                        }
                    }

                    //Try the depth along the negative triangle normal.

                    //If it's counterclockwise, this direction is unnecessary (the resulting normal would be invalidated by the onesidedness of the triangle).
                    if (triangle.sidedness != TriangleSidedness.Counterclockwise)
                    {
                        Vector3.Negate(ref triangleNormal, out triangleNormal);
                        MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref triangleNormal, out candidateDepth, out candidateNormal);
                        if (candidateDepth < contact.PenetrationDepth)
                        {
                            contact.Normal = candidateNormal;
                            contact.PenetrationDepth = candidateDepth;
                        }
                    }




                }



                MPRToolbox.RefinePenetration(convex, triangle, ref Toolbox.RigidIdentity, contact.PenetrationDepth, ref contact.Normal, out contact.PenetrationDepth, out contact.Normal, out contact.Position);

                //It's possible for the normal to still face the 'wrong' direction according to one sided triangles.
                if (triangle.sidedness != TriangleSidedness.DoubleSided)
                {
                    Vector3.Dot(ref triangleNormal, ref contact.Normal, out dot);
                    if (dot < 0)
                    {
                        //Skip the add process.
                        goto InnerSphere;
                    }
                }


                contact.Id = -1;

                if (contact.PenetrationDepth < convex.collisionMargin + triangle.collisionMargin)
                {
                    state = CollisionState.ExternalNear; //If it's emerged from the deep contact, we can go back to using the preferred GJK method.
                }
                contactList.Add(ref contact);
            }

        InnerSphere:

            if (TryInnerSphereContact(out contact))
            {
                contactList.Add(ref contact);
            }
            if (contactList.Count > 0)
                return true;

            state = CollisionState.ExternalSeparated;
            return false;












        }
        public override void Update(float dt)
        {
            //Now, generate a contact between the two shapes.
            float   distance;
            Vector3 axis;
            var     manifold = new TinyStructList <BoxContactData>();

            if (BoxBoxCollider.AreBoxesColliding(boxA.Shape, boxB.Shape, ref boxA.worldTransform, ref boxB.worldTransform, out distance, out axis, out manifold))
            {
                Vector3.Negate(ref axis, out axis);
                TinyList <int> toRemove = new TinyList <int>();
                BoxContactData data;
                for (int i = 0; i < contacts.Count; i++)
                {
                    bool found = false;
                    for (int j = manifold.Count - 1; j >= 0; j--)
                    {
                        manifold.Get(j, out data);
                        if (contacts.Elements[i].Id == data.Id)
                        {
                            found = true;
                            //Update contact...
                            contacts.Elements[i].Position         = data.Position;
                            contacts.Elements[i].PenetrationDepth = -data.Depth;
                            contacts.Elements[i].Normal           = axis;
                            contacts.Elements[i].Validate();
                            //Remove manifold entry
                            manifold.RemoveAt(j);
                            break;
                        }
                    }
                    if (!found)
                    {//No match found
                        toRemove.Add(i);
                    }
                }

                ////Go through the indices to remove.
                ////For each one, replace the removal index with a contact in the new manifold.
                //int removalIndex;
                //for (removalIndex = toRemove.count - 1; removalIndex >= 0 && manifold.count > 0; removalIndex--)
                //{
                //    int indexToReplace = toRemove[removalIndex];
                //    toRemove.RemoveAt(removalIndex);
                //    manifold.Get(manifold.count - 1, out data);
                //    //Update contact...
                //    contacts.Elements[indexToReplace].Position = data.Position;
                //    contacts.Elements[indexToReplace].PenetrationDepth = -data.Depth;
                //    contacts.Elements[indexToReplace].Normal = axis;
                //    contacts.Elements[indexToReplace].Id = data.Id;
                //    //Remove manifold entry
                //    manifold.RemoveAt(manifold.count - 1);

                //}

                //Alright, we ran out of contacts to replace (if, in fact, toRemove isn't empty now).  Just remove the remainder.
                //toRemove is sorted by increasing index.  Go backwards along it so that the indices are valid all the way through.
                for (int i = toRemove.Count - 1; i >= 0; i--)
                {
                    Remove(toRemove[i]);
                }

                //Add new contacts.
                for (int i = 0; i < manifold.Count; i++)
                {
                    manifold.Get(i, out data);
                    ContactData newContact = new ContactData();
                    newContact.Position         = data.Position;
                    newContact.PenetrationDepth = -data.Depth;
                    newContact.Normal           = axis;
                    newContact.Id = data.Id;

                    Add(ref newContact);
                }
            }
            else
            {
                //Not colliding, so get rid of it.
                for (int i = contacts.Count - 1; i >= 0; i--)
                {
                    Remove(i);
                }
            }
        }
Beispiel #21
0
        //Relies on the triangle being located in the local space of the convex object.  The convex transform is used to transform the
        //contact points back from the convex's local space into world space.
        ///<summary>
        /// Generates a contact between the triangle and convex.
        ///</summary>
        ///<param name="contactList">Contact between the shapes, if any.</param>
        ///<returns>Whether or not the shapes are colliding.</returns>
        public override bool GenerateContactCandidates(TriangleShape triangle, out TinyStructList <ContactData> contactList)
        {
            contactList = new TinyStructList <ContactData>();


            Vector3 ab, ac;

            Vector3.Subtract(ref triangle.vB, ref triangle.vA, out ab);
            Vector3.Subtract(ref triangle.vC, ref triangle.vA, out ac);
            Vector3 triangleNormal;

            Vector3.Cross(ref ab, ref ac, out triangleNormal);
            if (triangleNormal.LengthSquared() < Toolbox.Epsilon * .01f)
            {
                //If the triangle is degenerate, use the offset between its center and the sphere.
                Vector3.Add(ref triangle.vA, ref triangle.vB, out triangleNormal);
                Vector3.Add(ref triangleNormal, ref triangle.vC, out triangleNormal);
                Vector3.Multiply(ref triangleNormal, 1 / 3f, out triangleNormal);
                if (triangleNormal.LengthSquared() < Toolbox.Epsilon * .01f)
                {
                    triangleNormal = Toolbox.UpVector; //Alrighty then! Pick a random direction.
                }
            }


            float dot;

            Vector3.Dot(ref triangleNormal, ref triangle.vA, out dot);
            switch (triangle.sidedness)
            {
            case TriangleSidedness.DoubleSided:
                if (dot < 0)
                {
                    Vector3.Negate(ref triangleNormal, out triangleNormal);     //Normal must face outward.
                }
                break;

            case TriangleSidedness.Clockwise:
                if (dot > 0)
                {
                    return(false);    //Wrong side, can't have a contact pointing in a reasonable direction.
                }
                break;

            case TriangleSidedness.Counterclockwise:
                if (dot < 0)
                {
                    return(false);    //Wrong side, can't have a contact pointing in a reasonable direction.
                }
                break;
            }


            Vector3 closestPoint;

            //Could optimize this process a bit.  The 'point' being compared is always zero.  Additionally, since the triangle normal is available,
            //there is a little extra possible optimization.
            lastRegion = Toolbox.GetClosestPointOnTriangleToPoint(ref triangle.vA, ref triangle.vB, ref triangle.vC, ref Toolbox.ZeroVector, out closestPoint);
            float lengthSquared = closestPoint.LengthSquared();
            float marginSum     = triangle.collisionMargin + sphere.collisionMargin;

            if (lengthSquared <= marginSum * marginSum)
            {
                var contact = new ContactData();
                if (lengthSquared < Toolbox.Epsilon)
                {
                    //Super close to the triangle.  Normalizing would be dangerous.

                    Vector3.Negate(ref triangleNormal, out contact.Normal);
                    contact.Normal.Normalize();
                    contact.PenetrationDepth = marginSum;
                    contactList.Add(ref contact);
                    return(true);
                }

                lengthSquared = (float)Math.Sqrt(lengthSquared);
                Vector3.Divide(ref closestPoint, lengthSquared, out contact.Normal);
                contact.PenetrationDepth = marginSum - lengthSquared;
                contact.Position         = closestPoint;
                contactList.Add(ref contact);
                return(true);
            }
            return(false);
        }
        private bool DoDeepContact(TriangleShape triangle, out TinyStructList<ContactData> contactList)
        {
            //Find the origin to triangle center offset.
            System.Numerics.Vector3 center;
            Vector3Ex.Add(ref triangle.vA, ref triangle.vB, out center);
            Vector3Ex.Add(ref center, ref triangle.vC, out center);
            Vector3Ex.Multiply(ref center, 1f / 3f, out center);

            ContactData contact;

            contactList = new TinyStructList<ContactData>();

            if (MPRToolbox.AreLocalShapesOverlapping(convex, triangle, ref center, ref Toolbox.RigidIdentity))
            {

                float dot;

                System.Numerics.Vector3 triangleNormal, ab, ac;
                Vector3Ex.Subtract(ref triangle.vB, ref triangle.vA, out ab);
                Vector3Ex.Subtract(ref triangle.vC, ref triangle.vA, out ac);
                Vector3Ex.Cross(ref ab, ref ac, out triangleNormal);
                float lengthSquared = triangleNormal.LengthSquared();
                if (lengthSquared < Toolbox.Epsilon * .01f)
                {
                    //Degenerate triangle! That's no good.
                    //Just use the direction pointing from A to B, "B" being the triangle.  That direction is center - origin, or just center.
                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref center, out contact.PenetrationDepth, out contact.Normal, out contact.Position);
                }
                else
                {
                    //Normalize the normal.
                    Vector3Ex.Divide(ref triangleNormal, (float)Math.Sqrt(lengthSquared), out triangleNormal);

                    //TODO: This tests all three edge axes with a full MPR raycast.  That's not really necessary; the correct edge normal should be discoverable, resulting in a single MPR raycast.

                    //Find the edge directions that will be tested with MPR.
                    System.Numerics.Vector3 AO, BO, CO;
                    System.Numerics.Vector3 AB, BC, CA;
                    Vector3Ex.Subtract(ref center, ref triangle.vA, out AO);
                    Vector3Ex.Subtract(ref center, ref triangle.vB, out BO);
                    Vector3Ex.Subtract(ref center, ref triangle.vC, out CO);
                    Vector3Ex.Subtract(ref triangle.vB, ref triangle.vA, out AB);
                    Vector3Ex.Subtract(ref triangle.vC, ref triangle.vB, out BC);
                    Vector3Ex.Subtract(ref triangle.vA, ref triangle.vC, out CA);

                    //We don't have to worry about degenerate triangles here because we've already handled that possibility above.
                    System.Numerics.Vector3 ABnormal, BCnormal, CAnormal;

                    //Project the center onto the edge to find the direction from the center to the edge AB.
                    Vector3Ex.Dot(ref AO, ref AB, out dot);
                    Vector3Ex.Multiply(ref AB, dot / AB.LengthSquared(), out ABnormal);
                    Vector3Ex.Subtract(ref AO, ref ABnormal, out ABnormal);
                    ABnormal.Normalize();

                    //Project the center onto the edge to find the direction from the center to the edge BC.
                    Vector3Ex.Dot(ref BO, ref BC, out dot);
                    Vector3Ex.Multiply(ref BC, dot / BC.LengthSquared(), out BCnormal);
                    Vector3Ex.Subtract(ref BO, ref BCnormal, out BCnormal);
                    BCnormal.Normalize();

                    //Project the center onto the edge to find the direction from the center to the edge BC.
                    Vector3Ex.Dot(ref CO, ref CA, out dot);
                    Vector3Ex.Multiply(ref CA, dot / CA.LengthSquared(), out CAnormal);
                    Vector3Ex.Subtract(ref CO, ref CAnormal, out CAnormal);
                    CAnormal.Normalize();

                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref ABnormal, out contact.PenetrationDepth, out contact.Normal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3Ex.Dot(ref triangleNormal, ref contact.Normal, out dot);
                    if ((triangle.sidedness == TriangleSidedness.Clockwise && dot > 0) || (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0))
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        System.Numerics.Vector3 previousNormal = contact.Normal;
                        Vector3Ex.Dot(ref contact.Normal, ref triangleNormal, out dot);

                        System.Numerics.Vector3 p;
                        Vector3Ex.Multiply(ref contact.Normal, dot, out p);
                        Vector3Ex.Subtract(ref contact.Normal, ref p, out contact.Normal);
                        float length = contact.Normal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3Ex.Divide(ref contact.Normal, (float)Math.Sqrt(length), out contact.Normal);
                            Vector3Ex.Dot(ref contact.Normal, ref previousNormal, out dot);
                            contact.PenetrationDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal = new System.Numerics.Vector3();
                        }
                    }

                    System.Numerics.Vector3 candidateNormal;
                    float candidateDepth;

                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref BCnormal, out candidateDepth, out candidateNormal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3Ex.Dot(ref triangleNormal, ref candidateNormal, out dot);
                    if ((triangle.sidedness == TriangleSidedness.Clockwise && dot > 0) || (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0))
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        System.Numerics.Vector3 previousNormal = candidateNormal;
                        Vector3Ex.Dot(ref candidateNormal, ref triangleNormal, out dot);

                        System.Numerics.Vector3 p;
                        Vector3Ex.Multiply(ref candidateNormal, dot, out p);
                        Vector3Ex.Subtract(ref candidateNormal, ref p, out candidateNormal);
                        float length = candidateNormal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3Ex.Divide(ref candidateNormal, (float)Math.Sqrt(length), out candidateNormal);
                            Vector3Ex.Dot(ref candidateNormal, ref previousNormal, out dot);
                            candidateDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal = new System.Numerics.Vector3();
                        }
                    }
                    if (candidateDepth < contact.PenetrationDepth)
                    {
                        contact.Normal = candidateNormal;
                        contact.PenetrationDepth = candidateDepth;
                    }

                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref CAnormal, out candidateDepth, out candidateNormal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3Ex.Dot(ref triangleNormal, ref candidateNormal, out dot);
                    if ((triangle.sidedness == TriangleSidedness.Clockwise && dot > 0) || (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0))
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        System.Numerics.Vector3 previousNormal = candidateNormal;
                        Vector3Ex.Dot(ref candidateNormal, ref triangleNormal, out dot);

                        System.Numerics.Vector3 p;
                        Vector3Ex.Multiply(ref candidateNormal, dot, out p);
                        Vector3Ex.Subtract(ref candidateNormal, ref p, out candidateNormal);
                        float length = candidateNormal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3Ex.Divide(ref candidateNormal, (float)Math.Sqrt(length), out candidateNormal);
                            Vector3Ex.Dot(ref candidateNormal, ref previousNormal, out dot);
                            candidateDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal = new System.Numerics.Vector3();
                        }
                    }
                    if (candidateDepth < contact.PenetrationDepth)
                    {
                        contact.Normal = candidateNormal;
                        contact.PenetrationDepth = candidateDepth;
                    }

                    //Try the depth along the positive triangle normal.

                    //If it's clockwise, this direction is unnecessary (the resulting normal would be invalidated by the onesidedness of the triangle).
                    if (triangle.sidedness != TriangleSidedness.Clockwise)
                    {
                        MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref triangleNormal, out candidateDepth, out candidateNormal);
                        if (candidateDepth < contact.PenetrationDepth)
                        {
                            contact.Normal = candidateNormal;
                            contact.PenetrationDepth = candidateDepth;
                        }
                    }

                    //Try the depth along the negative triangle normal.

                    //If it's counterclockwise, this direction is unnecessary (the resulting normal would be invalidated by the onesidedness of the triangle).
                    if (triangle.sidedness != TriangleSidedness.Counterclockwise)
                    {
                        Vector3Ex.Negate(ref triangleNormal, out triangleNormal);
                        MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref triangleNormal, out candidateDepth, out candidateNormal);
                        if (candidateDepth < contact.PenetrationDepth)
                        {
                            contact.Normal = candidateNormal;
                            contact.PenetrationDepth = candidateDepth;
                        }
                    }

                }

                MPRToolbox.RefinePenetration(convex, triangle, ref Toolbox.RigidIdentity, contact.PenetrationDepth, ref contact.Normal, out contact.PenetrationDepth, out contact.Normal, out contact.Position);

                //It's possible for the normal to still face the 'wrong' direction according to one sided triangles.
                if (triangle.sidedness != TriangleSidedness.DoubleSided)
                {
                    Vector3Ex.Dot(ref triangleNormal, ref contact.Normal, out dot);
                    if (dot < 0)
                    {
                        //Skip the add process.
                        goto InnerSphere;
                    }
                }

                contact.Id = -1;

                if (contact.PenetrationDepth < convex.collisionMargin + triangle.collisionMargin)
                {
                    state = CollisionState.ExternalNear; //If it's emerged from the deep contact, we can go back to using the preferred GJK method.
                }
                contactList.Add(ref contact);
            }

            InnerSphere:

            if (TryInnerSphereContact(triangle, out contact))
            {
                contactList.Add(ref contact);
            }
            if (contactList.Count > 0)
                return true;

            state = CollisionState.ExternalSeparated;
            return false;
        }