Beispiel #1
0
        private static ISymbolicRegressionSolution CreateSymbolicSolution(List <IRegressionModel> models, double nu, IRegressionProblemData problemData)
        {
            var symbModels   = models.OfType <ISymbolicRegressionModel>();
            var lowerLimit   = symbModels.Min(m => m.LowerEstimationLimit);
            var upperLimit   = symbModels.Max(m => m.UpperEstimationLimit);
            var interpreter  = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
            var progRootNode = new ProgramRootSymbol().CreateTreeNode();
            var startNode    = new StartSymbol().CreateTreeNode();

            var addNode   = new Addition().CreateTreeNode();
            var mulNode   = new Multiplication().CreateTreeNode();
            var scaleNode = (ConstantTreeNode) new Constant().CreateTreeNode(); // all models are scaled using the same nu

            scaleNode.Value = nu;

            foreach (var m in symbModels)
            {
                var relevantPart = m.SymbolicExpressionTree.Root.GetSubtree(0).GetSubtree(0); // skip root and start
                addNode.AddSubtree((ISymbolicExpressionTreeNode)relevantPart.Clone());
            }

            mulNode.AddSubtree(addNode);
            mulNode.AddSubtree(scaleNode);
            startNode.AddSubtree(mulNode);
            progRootNode.AddSubtree(startNode);
            var t             = new SymbolicExpressionTree(progRootNode);
            var combinedModel = new SymbolicRegressionModel(problemData.TargetVariable, t, interpreter, lowerLimit, upperLimit);
            var sol           = new SymbolicRegressionSolution(combinedModel, problemData);

            return(sol);
        }
        protected override void UpdateModel(ISymbolicExpressionTree tree)
        {
            var model = new SymbolicRegressionModel(Content.ProblemData.TargetVariable, tree, Content.Model.Interpreter, Content.Model.LowerEstimationLimit, Content.Model.UpperEstimationLimit);

            model.Scale(Content.ProblemData);
            Content.Model = model;
        }
        private IContent CreateModel(int idx)
        {
            idx -= 1;
            var rfModel = Content.Model as RandomForestModel;

            if (rfModel == null)
            {
                return(null);
            }
            var regProblemData   = Content.ProblemData as IRegressionProblemData;
            var classProblemData = Content.ProblemData as IClassificationProblemData;

            if (idx < 0 || idx >= rfModel.NumberOfTrees)
            {
                return(null);
            }
            if (regProblemData != null)
            {
                var syModel = new SymbolicRegressionModel(regProblemData.TargetVariable, rfModel.ExtractTree(idx),
                                                          new SymbolicDataAnalysisExpressionTreeLinearInterpreter());
                return(syModel.CreateRegressionSolution(regProblemData));
            }
            else if (classProblemData != null)
            {
                var syModel = new SymbolicDiscriminantFunctionClassificationModel(classProblemData.TargetVariable, rfModel.ExtractTree(idx),
                                                                                  new SymbolicDataAnalysisExpressionTreeLinearInterpreter(), new NormalDistributionCutPointsThresholdCalculator());
                syModel.RecalculateModelParameters(classProblemData, classProblemData.TrainingIndices);
                return(syModel.CreateClassificationSolution(classProblemData));
            }
            else
            {
                throw new InvalidProgramException();
            }
        }
        public static ISymbolicRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData, string modelStructure, int maxIterations)
        {
            var parser     = new InfixExpressionParser();
            var tree       = parser.Parse(modelStructure);
            var simplifier = new SymbolicDataAnalysisExpressionTreeSimplifier();

            if (!SymbolicRegressionConstantOptimizationEvaluator.CanOptimizeConstants(tree))
            {
                throw new ArgumentException("The optimizer does not support the specified model structure.");
            }

            var interpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();

            SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, tree, problemData, problemData.TrainingIndices,
                                                                              applyLinearScaling: false, maxIterations: maxIterations,
                                                                              updateVariableWeights: false, updateConstantsInTree: true);


            var scaledModel = new SymbolicRegressionModel(problemData.TargetVariable, tree, (ISymbolicDataAnalysisExpressionTreeInterpreter)interpreter.Clone());

            scaledModel.Scale(problemData);
            SymbolicRegressionSolution solution = new SymbolicRegressionSolution(scaledModel, (IRegressionProblemData)problemData.Clone());

            solution.Model.Name = "Regression Model";
            solution.Name       = "Regression Solution";
            return(solution);
        }
        public void CustomModelVariableImpactTest()
        {
            IRegressionProblemData      problemData     = CreateDefaultProblem();
            ISymbolicExpressionTree     tree            = CreateCustomExpressionTree();
            IRegressionModel            model           = new SymbolicRegressionModel(problemData.TargetVariable, tree, new SymbolicDataAnalysisExpressionTreeInterpreter());
            IRegressionSolution         solution        = new RegressionSolution(model, (IRegressionProblemData)problemData.Clone());
            Dictionary <string, double> expectedImpacts = GetExpectedValuesForCustomProblem();

            CheckDefaultAsserts(solution, expectedImpacts);
        }
        protected override void Run(CancellationToken cancellationToken)
        {
            var interpreter          = new SymbolicDataAnalysisExpressionTreeInterpreter();
            var modelsWithComplexity = new List <(ISymbolicRegressionModel, int)>();

            Stopwatch stopwatch = Stopwatch.StartNew();

            RunFFX(out var basisFunctions, out var lambda, out var coeff, out var trainNMSE, out var testNMSE, out var intercept, out var elnetData);
            stopwatch.Stop();

            var runtime = stopwatch.ElapsedTicks / 10000000.0; // in seconds

            if (Verbose)
            {
                var errorTable = NMSEGraph(coeff, lambda, trainNMSE, testNMSE);
                Results.Add(new Result(errorTable.Name, errorTable.Description, errorTable));
                var coeffTable = CoefficientGraph(coeff, lambda, elnetData.AllowedInputVariables, elnetData.Dataset);
                Results.Add(new Result(coeffTable.Name, coeffTable.Description, coeffTable));
            }

            int complexity(double[] modelCoeffs) => modelCoeffs.Count(val => val != 0) + 1;

            for (int row = 0; row < coeff.GetUpperBound(0); row++)
            {
                var coeffs                     = Utils.GetRow(coeff, row);
                var numBasisFuncs              = complexity(coeffs);
                ISymbolicExpressionTree  tree  = Tree(basisFunctions, coeffs, intercept[row]);
                ISymbolicRegressionModel model = new SymbolicRegressionModel(elnetData.TargetVariable, tree, interpreter);
                modelsWithComplexity.Add((model, numBasisFuncs));
            }

            // calculate the pareto front
            var paretoFront = Utils.NondominatedFilter(modelsWithComplexity.ToArray(), coeff, testNMSE, complexity);

            modelsWithComplexity = modelsWithComplexity.Distinct(new Utils.SymbolicRegressionModelSameComplexity()).ToList();

            var results  = new ItemCollection <IResult>();
            int modelIdx = 1;

            foreach (var model in modelsWithComplexity)
            {
                results.Add(new Result("Model " + (modelIdx < 10 ? "0" + modelIdx : modelIdx.ToString()), model.Item1));
                //results.Add(new ItemCollection<IResult>(3){
                //new Result("Model Complexity", new IntValue(model.Item2)),
                //new Result("Model Accuracy", new RegressionSolution(model.Item1, Problem.ProblemData))
                //});
                modelIdx++;
            }

            Results.Add(new Result("Pareto Front", "The Pareto Front of the Models. ", results));
            if (FilePath != "")
            {
                SaveInFile(paretoFront, runtime, FilePath, ",");
            }
        }
Beispiel #7
0
        private IContent CreateModel(int idx)
        {
            idx -= 1;
            var rfModel        = Content;
            var rfClassModel   = rfModel as IClassificationModel; // rfModel is always a IRegressionModel and a IClassificationModel
            var targetVariable = rfClassModel.TargetVariable;

            if (rfModel == null)
            {
                return(null);
            }
            if (idx < 0 || idx >= rfModel.NumberOfTrees)
            {
                return(null);
            }
            var syModel = new SymbolicRegressionModel(targetVariable, rfModel.ExtractTree(idx),
                                                      new SymbolicDataAnalysisExpressionTreeLinearInterpreter());

            return(syModel);
        }
 protected override void UpdateModel(ISymbolicExpressionTree tree) {
   var model = new SymbolicRegressionModel(Content.ProblemData.TargetVariable, tree, Content.Model.Interpreter, Content.Model.LowerEstimationLimit, Content.Model.UpperEstimationLimit);
   model.Scale(Content.ProblemData);
   Content.Model = model;
 }
Beispiel #9
0
        /// <summary>
        /// Fits a model to the data by optimizing the numeric constants.
        /// Model is specified as infix expression containing variable names and numbers.
        /// The starting point for the numeric constants is initialized randomly if a random number generator is specified (~N(0,1)). Otherwise the user specified constants are
        /// used as a starting point.
        /// </summary>-
        /// <param name="problemData">Training and test data</param>
        /// <param name="modelStructure">The function as infix expression</param>
        /// <param name="maxIterations">Number of constant optimization iterations (using Levenberg-Marquardt algorithm)</param>
        /// <param name="random">Optional random number generator for random initialization of numeric constants.</param>
        /// <returns></returns>
        public static ISymbolicRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData, string modelStructure, int maxIterations, bool applyLinearScaling, IRandom rand = null)
        {
            var parser = new InfixExpressionParser();
            var tree   = parser.Parse(modelStructure);
            // parser handles double and string variables equally by creating a VariableTreeNode
            // post-process to replace VariableTreeNodes by FactorVariableTreeNodes for all string variables
            var factorSymbol = new FactorVariable();

            factorSymbol.VariableNames =
                problemData.AllowedInputVariables.Where(name => problemData.Dataset.VariableHasType <string>(name));
            factorSymbol.AllVariableNames = factorSymbol.VariableNames;
            factorSymbol.VariableValues   =
                factorSymbol.VariableNames.Select(name =>
                                                  new KeyValuePair <string, Dictionary <string, int> >(name,
                                                                                                       problemData.Dataset.GetReadOnlyStringValues(name).Distinct()
                                                                                                       .Select((n, i) => Tuple.Create(n, i))
                                                                                                       .ToDictionary(tup => tup.Item1, tup => tup.Item2)));

            foreach (var parent in tree.IterateNodesPrefix().ToArray())
            {
                for (int i = 0; i < parent.SubtreeCount; i++)
                {
                    var varChild       = parent.GetSubtree(i) as VariableTreeNode;
                    var factorVarChild = parent.GetSubtree(i) as FactorVariableTreeNode;
                    if (varChild != null && factorSymbol.VariableNames.Contains(varChild.VariableName))
                    {
                        parent.RemoveSubtree(i);
                        var factorTreeNode = (FactorVariableTreeNode)factorSymbol.CreateTreeNode();
                        factorTreeNode.VariableName = varChild.VariableName;
                        factorTreeNode.Weights      =
                            factorTreeNode.Symbol.GetVariableValues(factorTreeNode.VariableName).Select(_ => 1.0).ToArray();
                        // weight = 1.0 for each value
                        parent.InsertSubtree(i, factorTreeNode);
                    }
                    else if (factorVarChild != null && factorSymbol.VariableNames.Contains(factorVarChild.VariableName))
                    {
                        if (factorSymbol.GetVariableValues(factorVarChild.VariableName).Count() != factorVarChild.Weights.Length)
                        {
                            throw new ArgumentException(
                                      string.Format("Factor variable {0} needs exactly {1} weights",
                                                    factorVarChild.VariableName,
                                                    factorSymbol.GetVariableValues(factorVarChild.VariableName).Count()));
                        }
                        parent.RemoveSubtree(i);
                        var factorTreeNode = (FactorVariableTreeNode)factorSymbol.CreateTreeNode();
                        factorTreeNode.VariableName = factorVarChild.VariableName;
                        factorTreeNode.Weights      = factorVarChild.Weights;
                        parent.InsertSubtree(i, factorTreeNode);
                    }
                }
            }

            if (!SymbolicRegressionConstantOptimizationEvaluator.CanOptimizeConstants(tree))
            {
                throw new ArgumentException("The optimizer does not support the specified model structure.");
            }

            // initialize constants randomly
            if (rand != null)
            {
                foreach (var node in tree.IterateNodesPrefix().OfType <ConstantTreeNode>())
                {
                    double f = Math.Exp(NormalDistributedRandom.NextDouble(rand, 0, 1));
                    double s = rand.NextDouble() < 0.5 ? -1 : 1;
                    node.Value = s * node.Value * f;
                }
            }
            var interpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();

            SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, tree, problemData, problemData.TrainingIndices,
                                                                              applyLinearScaling: applyLinearScaling, maxIterations: maxIterations,
                                                                              updateVariableWeights: false, updateConstantsInTree: true);

            var model = new SymbolicRegressionModel(problemData.TargetVariable, tree, (ISymbolicDataAnalysisExpressionTreeInterpreter)interpreter.Clone());

            if (applyLinearScaling)
            {
                model.Scale(problemData);
            }

            SymbolicRegressionSolution solution = new SymbolicRegressionSolution(model, (IRegressionProblemData)problemData.Clone());

            solution.Model.Name = "Regression Model";
            solution.Name       = "Regression Solution";
            return(solution);
        }