Beispiel #1
0
        public void SpatialSequenceLearningExperiment()
        {
            var parameters = GetDefaultParams();

            parameters.Set(KEY.POTENTIAL_RADIUS, 64 * 64);
            parameters.Set(KEY.POTENTIAL_PCT, 1.0);
            parameters.Set(KEY.GLOBAL_INHIBITION, false);
            parameters.Set(KEY.STIMULUS_THRESHOLD, 0.5);
            parameters.Set(KEY.INHIBITION_RADIUS, (int)0.25 * 64 * 64);
            parameters.Set(KEY.LOCAL_AREA_DENSITY, -1);
            parameters.Set(KEY.NUM_ACTIVE_COLUMNS_PER_INH_AREA, 0.1 * 64 * 64);
            parameters.Set(KEY.DUTY_CYCLE_PERIOD, 1000000);
            parameters.Set(KEY.MAX_BOOST, 5);

            parameters.setInputDimensions(new int[] { 32, 32 });
            parameters.setColumnDimensions(new int[] { 64, 64 });
            parameters.setNumActiveColumnsPerInhArea(0.02 * 64 * 64);
            var sp  = new SpatialPoolerMT();
            var mem = new Connections();

            double[] inputSequence = new double[] { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 };

            var inputVectors = GetEncodedSequence(inputSequence, 0.0, 100.0);

            parameters.apply(mem);

            sp.Init(mem, UnitTestHelpers.GetMemory());

            foreach (var inputVector in inputVectors)
            {
                for (int i = 0; i < 3; i++)
                {
                    var activeIndicies = sp.Compute(inputVector, true, true) as int[];
                    var activeArray    = sp.Compute(inputVector, true, false) as int[];

                    Debug.WriteLine(Helpers.StringifyVector(activeArray));
                    Debug.WriteLine(Helpers.StringifyVector(activeIndicies));
                }
            }
        }
        public void RunGaussianNoiseExperiment()
        {
            const int E_outBits     = 423;
            const int columnsNumber = 2048;

            int[]        SP_Result           = null;
            int[]        SP_NoisyResult      = null;
            List <int[]> SP_Result_List      = new List <int[]>();
            List <int[]> SP_NoisyResult_List = new List <int[]>();

            double[] ham_total = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
            double[] ham_avg   = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
            double   ham_upper;
            double   ham_lower;
            int      number_training_set = 41;  // Integer numbers range from -20 to 20 with step of 1.
            int      number_testing_set  = 401; // Decimal numbers range from -20 to 20 with step of 0.1.

            string experimentFolder = nameof(GaussianNoiseExperiment);

            // string SP_noisyinFolder = nameof(GoussianNoiseExperiment);
            Directory.CreateDirectory(experimentFolder);
            // Directory.CreateDirectory(SP_noisyinFolder);
            string SP_inFile      = $"{experimentFolder}\\MyEncoderOut.csv";
            string SP_noisyinFile = $"{experimentFolder}\\MyNoisyEncoderOut.csv";
            //string SP_outFolder = "MySPOutput";
            //string SP_noisyoutFolder = "MyNoisySPOutput";
            //Directory.CreateDirectory(SP_outFolder);
            //Directory.CreateDirectory(SP_noisyoutFolder);
            string SP_outFile      = $"{experimentFolder}\\MySPOut.csv";
            string SP_noisyoutFile = $"{experimentFolder}\\MyNoisySPOut.csv";

            //string testFolder = "MyDraftFoler";
            //Directory.CreateDirectory(testFolder);

            //-------------------------------------------------------
            //|                     PARAMETERS                      |
            //-------------------------------------------------------
            Parameters p = Parameters.getAllDefaultParameters();

            p.Set(KEY.RANDOM, new ThreadSafeRandom(42));

            //------------------SPATIAL POOLER PARAMETERS-----------------
            p.Set(KEY.INPUT_DIMENSIONS, new int[] { E_outBits });
            p.Set(KEY.POTENTIAL_RADIUS, -1);
            p.Set(KEY.POTENTIAL_PCT, 0.75);
            p.Set(KEY.GLOBAL_INHIBITION, true);
            p.Set(KEY.INHIBITION_RADIUS, 15);
            p.Set(KEY.LOCAL_AREA_DENSITY, -1.0);
            p.Set(KEY.NUM_ACTIVE_COLUMNS_PER_INH_AREA, 0.02 * columnsNumber);
            p.Set(KEY.STIMULUS_THRESHOLD, 5);
            p.Set(KEY.SYN_PERM_INACTIVE_DEC, 0.008);
            p.Set(KEY.SYN_PERM_ACTIVE_INC, 0.05);
            p.Set(KEY.SYN_PERM_CONNECTED, 0.10);
            p.Set(KEY.SYN_PERM_BELOW_STIMULUS_INC, 0.01);
            p.Set(KEY.SYN_PERM_TRIM_THRESHOLD, 0.05);

            p.Set(KEY.MIN_PCT_OVERLAP_DUTY_CYCLES, 1);
            p.Set(KEY.MIN_PCT_ACTIVE_DUTY_CYCLES, 0.001);
            p.Set(KEY.DUTY_CYCLE_PERIOD, 100);

            // These values activate powerfull boosting.
            p.Set(KEY.MAX_BOOST, 5);
            p.Set(KEY.DUTY_CYCLE_PERIOD, 100);
            p.Set(KEY.MIN_PCT_OVERLAP_DUTY_CYCLES, 1);

            p.Set(KEY.MAX_BOOST, 10);
            p.Set(KEY.WRAP_AROUND, true);
            p.Set(KEY.LEARN, true);

            //-------------------TEMPORAL MEMORY PARAMETERS----------------
            p.Set(KEY.COLUMN_DIMENSIONS, new int[] { columnsNumber });
            p.Set(KEY.CELLS_PER_COLUMN, 32);
            p.Set(KEY.ACTIVATION_THRESHOLD, 10);
            p.Set(KEY.LEARNING_RADIUS, 10);
            p.Set(KEY.MIN_THRESHOLD, 9);
            p.Set(KEY.MAX_NEW_SYNAPSE_COUNT, 20);
            p.Set(KEY.MAX_SYNAPSES_PER_SEGMENT, 225);
            p.Set(KEY.MAX_SEGMENTS_PER_CELL, 225);
            p.Set(KEY.INITIAL_PERMANENCE, 0.21);
            p.Set(KEY.CONNECTED_PERMANENCE, 0.1);
            p.Set(KEY.PERMANENCE_INCREMENT, 0.10);
            p.Set(KEY.PERMANENCE_DECREMENT, 0.10);
            p.Set(KEY.PREDICTED_SEGMENT_DECREMENT, 0.1);
            p.Set(KEY.LEARN, true);

            //Initiating components of a Cortex Layer
            SpatialPoolerMT sp1 = new SpatialPoolerMT();
            TemporalMemory  tm1 = new TemporalMemory();
            var             mem = new Connections();

            p.apply(mem);
            sp1.Init(mem, UnitTestHelpers.GetMemory());
            tm1.Init(mem);

            HtmClassifier <double, ComputeCycle> cls = new HtmClassifier <double, ComputeCycle>();

            Encoding(E_outBits);

            // Can adjust the number of SP learning cycles below
            for (int cycle = 0; cycle < 320; cycle++)
            {
                if (cycle >= 300)
                {
                    // These activates ew-born effect which switch offs the boosting.
                    //mem.setMaxBoost(0.0);
                    mem.HtmConfig.MaxBoost = 0.0;
                    //mem.updateMinPctOverlapDutyCycles(0.0);
                    mem.HtmConfig.MinPctOverlapDutyCycles = 0.0;
                }

                using (StreamReader sr = new StreamReader(SP_inFile))
                {
                    string line;
                    while ((line = sr.ReadLine()) != null)
                    {
                        string[] tokens   = line.Split(",");
                        int[]    SP_input = new int[E_outBits];
                        for (int i = 0; i < E_outBits; i++)
                        {
                            if (tokens[i + 1] == "0")
                            {
                                SP_input[i] = 0;
                            }
                            else
                            {
                                SP_input[i] = 1;
                            }
                        }
                        SP_Result = sp1.Compute(SP_input, true);
                    }
                }
            }

            using (StreamReader sr = new StreamReader(SP_inFile))
            {
                string line;
                int    lineNumber = 0;
                while ((line = sr.ReadLine()) != null)
                {
                    string[] tokens   = line.Split(",");
                    int[]    SP_input = new int[E_outBits];
                    for (int i = 0; i < E_outBits; i++)
                    {
                        if (tokens[i + 1] == "0")
                        {
                            SP_input[i] = 0;
                        }
                        else
                        {
                            SP_input[i] = 1;
                        }
                    }
                    SP_Result = sp1.Compute(SP_input, false, false);
                    SP_Result_List.Add(SP_Result);
                    int[,] SP_twoDimenArray = ArrayUtils.Make2DArray(SP_Result, 32, 64);
                    var SP_twoDimArray = ArrayUtils.Transpose(SP_twoDimenArray);
                    NeoCortexUtils.DrawBitmap(SP_twoDimArray, 1024, 1024, $"{experimentFolder}\\{lineNumber}.png", Color.DimGray, Color.LawnGreen, text: tokens[0]);
                    lineNumber++;
                }
            }

            using (StreamReader sr = new StreamReader(SP_noisyinFile))
            {
                string line;
                int    lineNumber = 0;
                while ((line = sr.ReadLine()) != null)
                {
                    string[] tokens   = line.Split(",");
                    int[]    SP_input = new int[E_outBits];
                    for (int i = 0; i < E_outBits; i++)
                    {
                        if (tokens[i + 1] == "0")
                        {
                            SP_input[i] = 0;
                        }
                        else
                        {
                            SP_input[i] = 1;
                        }
                    }
                    SP_NoisyResult = sp1.Compute(SP_input, false, false);
                    SP_NoisyResult_List.Add(SP_NoisyResult);
                    var ham = MathHelpers.GetHammingDistance(SP_Result_List[lineNumber], SP_NoisyResult_List[lineNumber], true);
                    Debug.WriteLine($"Noisy input: {tokens[0]} - Hamming NonZ: {ham}");
                    ham = MathHelpers.GetHammingDistance(SP_Result_List[lineNumber], SP_NoisyResult_List[lineNumber], false);
                    Debug.WriteLine($"Noisy input: {tokens[0]} - Hamming All: {ham}");
                    int[,] SP_twoDimenArray = ArrayUtils.Make2DArray(SP_NoisyResult, 32, 64);
                    var SP_twoDimArray = ArrayUtils.Transpose(SP_twoDimenArray);
                    NeoCortexUtils.DrawBitmap(SP_twoDimArray, 1024, 1024, $"{experimentFolder}\\{lineNumber}.png", Color.DimGray, Color.LawnGreen, text: tokens[0]);
                    lineNumber++;
                }
            }

            for (int i = 0; i < number_testing_set - 1; i += 10)
            {
                int count = 1;
                for (int j = i + 1; j < i + 1 + 9; j++)
                {
                    if (i != 0 && i != number_testing_set - 1)
                    {
                        ham_upper             = MathHelpers.GetHammingDistance(SP_NoisyResult_List[i], SP_NoisyResult_List[j], true);
                        ham_lower             = MathHelpers.GetHammingDistance(SP_NoisyResult_List[i], SP_NoisyResult_List[i - count], true);
                        ham_total[count - 1] += ham_upper + ham_lower;
                        count++;
                    }
                    else if (i == 0)
                    {
                        ham_upper             = MathHelpers.GetHammingDistance(SP_NoisyResult_List[i], SP_NoisyResult_List[j], true);
                        ham_total[count - 1] += ham_upper;
                        count++;
                    }
                    else
                    {
                        ham_lower             = MathHelpers.GetHammingDistance(SP_NoisyResult_List[i], SP_NoisyResult_List[i - count], true);
                        ham_total[count - 1] += ham_lower;
                        count++;
                    }
                }
            }
            for (int i = 0; i < 9; i++)
            {
                ham_avg[i] = ham_total[i] / (number_training_set * 2 - 2);
                Debug.WriteLine($"0.{i + 1} step avg hamming distance: {ham_avg[i]}");
            }
        }
        public void MyTestMethod()
        {
            //DIRECTORIES TO STORE INPUT AND OUTPUT FILES OF THE EXPERIMENT

            //Encoder
            string E_inFolder = "NoiseExperiments/Input"; //Encoder's raw input file directory
            //Directory.CreateDirectory(E_inFolder);

            //----------------INPUT FILE PATH-----------------
            string E_inFile_train = $"{E_inFolder}\\sinusoidal.csv";                 //Encoder's input file in "Training mode"
            //<Robustness>
            string E_inFile_robustness = $"{E_inFolder}/Noisy_N-0-2_sinusoidal.csv"; // Encoder's input file in "Testing mode - Robustness" - All the files with name of the form "Noisy_*.csv"
            //</Robustness>
            //< Specificity >
            string E_inFile_specificity = $"{E_inFolder}/sinusoidal-specificity.csv"; // Encoder's input file in "Testing mode - Specificity"
            //</ Specificity >
            //------------------------------------------------

            string E_outFolder = "NoiseExperiments/MyEncoderOutput"; //Encoder's graphical output (PNG format) during "Testing mode" will be created here

            Directory.CreateDirectory(E_outFolder);
            string E_outFolder_train = $"{E_outFolder}/train"; // Encoder's graphical output (PNG format) during "Training mode" will be created here

            Directory.CreateDirectory(E_outFolder_train);

            //Spatial Pooler
            string SP_inFolder = "NoiseExperiments/MySPInput"; //Spatial Pooler's input file (Encoder's output (CSV format)) directory

            Directory.CreateDirectory(SP_inFolder);
            string SP_inFile_train       = $"{SP_inFolder}/MyEncoderOut_train.csv";       //Spatial Pooler's input file during "Training mode"
            string SP_inFile_robustness  = $"{SP_inFolder}/MyEncoderOut_robustness.csv";  //Spatial Pooler's input file during "Testing mode - robustness"
            string SP_inFile_specificity = $"{SP_inFolder}/MyEncoderOut_specificity.csv"; //Spatial Pooler's input file during "Testing mode - specificity"
            string SP_outFolder          = "MySPOutput";                                  //Spatial Pooler's graphical output (PNG format) will be stored here

            Directory.CreateDirectory(SP_outFolder);

            string SP_outFolder_compare = $"{SP_outFolder}/compare_445"; //This folder containing CSV files, which show Hamming distance between Spatial Pooler's output in "Training mode" and "Testing Mode"

            Directory.CreateDirectory(SP_outFolder_compare);

            //--------------------OUTPUT FILE PATH-------------------------
            //<Robustness>
            string SP_outFile_robustness = $"{SP_outFolder_compare}/compare_N-0-2.csv"; //The final output file in "Robustness test"
            //</Robustness>
            //<Specificity>
            string SP_outFile_specificity = $"{SP_outFolder_compare}/compare_specificity.csv"; //The final output file in "Specificity test"
            //</Specificity>
            //-------------------------------------------------------------


            //-------------------------------------------------------
            //|                    HTM PARAMETERS                   |
            //-------------------------------------------------------

            const int E_outBits     = 445;  //Number of Scalar Encoder's output bits
            const int columnsNumber = 2048; //Number of Spatial Pooler's output columns

            Parameters p = Parameters.getAllDefaultParameters();

            p.Set(KEY.RANDOM, new ThreadSafeRandom(42));

            //------------------SPATIAL POOLER PARAMETERS-----------------
            p.Set(KEY.INPUT_DIMENSIONS, new int[] { E_outBits });
            p.Set(KEY.POTENTIAL_RADIUS, -1);
            p.Set(KEY.POTENTIAL_PCT, 1);
            p.Set(KEY.GLOBAL_INHIBITION, true);
            p.Set(KEY.INHIBITION_RADIUS, 15);

            //Leave it
            p.Set(KEY.LOCAL_AREA_DENSITY, -1.0);
            p.Set(KEY.NUM_ACTIVE_COLUMNS_PER_INH_AREA, 0.02 * columnsNumber);

            p.Set(KEY.STIMULUS_THRESHOLD, 0.5);
            p.Set(KEY.SYN_PERM_INACTIVE_DEC, 0.008);
            p.Set(KEY.SYN_PERM_ACTIVE_INC, 0.01);
            p.Set(KEY.SYN_PERM_CONNECTED, 0.10);

            //Leave it
            p.Set(KEY.SYN_PERM_BELOW_STIMULUS_INC, 0.01);
            p.Set(KEY.SYN_PERM_TRIM_THRESHOLD, 0.05);
            p.Set(KEY.MIN_PCT_OVERLAP_DUTY_CYCLES, 0.001);
            p.Set(KEY.MIN_PCT_ACTIVE_DUTY_CYCLES, 0.001);

            p.Set(KEY.DUTY_CYCLE_PERIOD, 100);
            p.Set(KEY.MAX_BOOST, 10 /*10.0*/);
            p.Set(KEY.WRAP_AROUND, true);
            //p.Set(KEY.LEARN, true);


            //-------------------TEMPORAL MEMORY PARAMETERS----------------
            p.Set(KEY.COLUMN_DIMENSIONS, new int[] { columnsNumber });
            p.Set(KEY.CELLS_PER_COLUMN, 32);
            p.Set(KEY.ACTIVATION_THRESHOLD, 10);
            p.Set(KEY.LEARNING_RADIUS, 10);
            p.Set(KEY.MIN_THRESHOLD, 9);
            p.Set(KEY.MAX_NEW_SYNAPSE_COUNT, 20);
            p.Set(KEY.MAX_SYNAPSES_PER_SEGMENT, 225);
            p.Set(KEY.MAX_SEGMENTS_PER_CELL, 225);
            p.Set(KEY.INITIAL_PERMANENCE, 0.21);
            p.Set(KEY.CONNECTED_PERMANENCE, 0.5);
            p.Set(KEY.PERMANENCE_INCREMENT, 0.10);
            p.Set(KEY.PERMANENCE_DECREMENT, 0.10);
            p.Set(KEY.PREDICTED_SEGMENT_DECREMENT, 0.1);
            //p.Set(KEY.LEARN, true);

            //---------------------------------------------------
            //|                    UNIT TEST                    |
            //---------------------------------------------------

            //Initiating HTM modules
            SpatialPoolerMT sp1 = new SpatialPoolerMT();
            TemporalMemory  tm1 = new TemporalMemory();
            var             mem = new Connections();

            p.apply(mem);
            sp1.Init(mem, UnitTestHelpers.GetMemory());
            tm1.Init(mem);
            HtmClassifier <double, ComputeCycle> cls = new HtmClassifier <double, ComputeCycle>();



            //-------------------ENCODING INPUTS----------------------
            Encoding(E_inFile_train, SP_inFile_train, E_outFolder_train, E_outBits);



            //--------------------TRAINING MODE---------------------

            //SP training
            for (int j = 0; j < 5; j++)
            {
                using (StreamReader sr = new StreamReader(SP_inFile_train))
                {
                    string line;
                    while ((line = sr.ReadLine()) != null)
                    {
                        string[] tokens   = line.Split(",");
                        int[]    SP_input = new int[E_outBits];
                        for (int i = 0; i < E_outBits; i++)
                        {
                            if (tokens[i + 1] == "0")
                            {
                                SP_input[i] = 0;
                            }
                            else
                            {
                                SP_input[i] = 1;
                            }
                        }
                        for (int i = 0; i < 3; i++)
                        {
                            sp1.Compute(SP_input, true);
                        }
                    }
                }
            }

            Debug.WriteLine("-----------------------------------------------------");
            Debug.WriteLine("|-----------------FINISHED TRAINING-----------------|");
            Debug.WriteLine("-----------------------------------------------------");

            //TM + SP training
            double lastPredictedValue = 0.0;

            for (int j = 0; j < 20; j++)
            {
                using (StreamReader sr = new StreamReader(SP_inFile_train))
                {
                    string line;
                    while ((line = sr.ReadLine()) != null)
                    {
                        string[] tokens   = line.Split(",");
                        int[]    SP_input = new int[E_outBits];
                        for (int i = 0; i < E_outBits; i++)
                        {
                            if (tokens[i + 1] == "0")
                            {
                                SP_input[i] = 0;
                            }
                            else
                            {
                                SP_input[i] = 1;
                            }
                        }
                        var    SP_res = sp1.Compute(SP_input, true);
                        var    TM_res = tm1.Compute(SP_res, true) as ComputeCycle;
                        double input  = Convert.ToDouble(tokens[0], CultureInfo.InvariantCulture);
                        Debug.WriteLine($"Input: {input} - Predicted: {lastPredictedValue}");
                        //cls.Learn(input, TM_res.ActiveCells.ToArray(), TM_res.PredictiveCells.ToArray());
                        lastPredictedValue = cls.GetPredictedInputValue(TM_res.PredictiveCells.ToArray());
                    }
                }
            }
        }
Beispiel #4
0
        /// <summary>
        /// Processes the test cases for Noise Test taking the necessary parameters.
        /// It's the parent method which calls other utility methods to create the input vectors and the outputs.
        /// </summary>
        /// <param name="inputSequence">An array of double, consisting the starting indexes for each input vector</param>
        /// <param name="inputs">
        /// A parameter of the class "InputParameters", which contains all the input parameters needed as properties which can be set in a test case
        /// </param>
        /// <returns>Returns nothing</returns>
        public void ProcessTestCase(List <double[]> inputSequences, InputParameters inputs)
        {
            string path      = Directory.GetCurrentDirectory();
            string parentDir = path.Substring(0, path.IndexOf("bin") - 1);
            string resultDir = parentDir.Substring(0, parentDir.LastIndexOf(@"\"));

            string timeStamp = DateTime.Now.ToString("yyyyMMddHHmmss");
            string outFolder = resultDir + @"\SpatialPooler_Results\" + timeStamp + @"\Output\";
            string inFolder  = resultDir + @"\SpatialPooler_Results\" + timeStamp + @"\InputVectors";

            if (!Directory.Exists(outFolder))
            {
                Directory.CreateDirectory(outFolder);
            }

            if (!Directory.Exists(inFolder + @"\"))
            {
                Directory.CreateDirectory(inFolder);
            }

            //int radius = 0;

            var parameters = GetDefaultParams();

            parameters.Set(KEY.POTENTIAL_RADIUS, 64 * 64);
            parameters.Set(KEY.POTENTIAL_PCT, 1.0);
            parameters.Set(KEY.GLOBAL_INHIBITION, false);
            parameters.Set(KEY.STIMULUS_THRESHOLD, 0.5);
            parameters.Set(KEY.INHIBITION_RADIUS, (int)0.25 * 64 * 64);
            parameters.Set(KEY.LOCAL_AREA_DENSITY, -1);
            parameters.Set(KEY.NUM_ACTIVE_COLUMNS_PER_INH_AREA, 0.1 * 64 * 64);
            parameters.Set(KEY.DUTY_CYCLE_PERIOD, 1000000);
            parameters.Set(KEY.MAX_BOOST, 5);
            Console.WriteLine("Fetched all default parameters\n");

            parameters.setInputDimensions(new int[] { 32, 32 });
            parameters.setColumnDimensions(new int[] { 64, 64 });
            parameters.setNumActiveColumnsPerInhArea(0.02 * 64 * 64);
            var sp  = new SpatialPoolerMT();
            var mem = new Connections();

            parameters.apply(mem);
            Console.WriteLine("\nConfiguring the Inputs...\n");
            sp.Init(mem, GetInMemoryDictionary());
            int outFolderCount = 0;

            int compareIndex = Convert.ToInt32(inputs.getCompareNumber());

            double[][] recordOutput    = null;
            double[]   hammingDistance = null;

            foreach (double[] inputSequence in inputSequences)
            {
                outFolderCount++;
                double minVal = 0.0;
                for (int i = 0; i < inputSequence.Length; i++)
                {
                    if (i == 0)
                    {
                        minVal = inputSequence[i];
                    }
                    else if (inputSequence[i] < minVal)
                    {
                        minVal = inputSequence[i];
                    }
                }
                minVal -= 1.0;

                Console.WriteLine("\nGetting the Input Vectors...\n");
                var inputVectors = GetEncodedSequence(inputSequence, minVal, inputs.getMaxIndex(), inputs, inFolder);

                int count = 1;
                //string output = String.Empty;
                int max = 0;
                for (int i = 0; i < inputVectors.Count; i++)
                {
                    hammingDistance = null;
                    //output = String.Empty;
                    Console.WriteLine("Computing the Output for the vector no: " + count.ToString() + "...\n");
                    var activeArray = sp.Compute(inputVectors[i], true) as int[];

                    for (int j = 0; j < activeArray.Length; j++)
                    {
                        if (activeArray[j] > max)
                        {
                            max = activeArray[j];
                        }
                    }

                    //var str = Helpers.StringifyVector(activeArray);

                    int rows    = Convert.ToInt32(Math.Ceiling(Math.Sqrt(Convert.ToDouble(max))));
                    int counter = 0;
                    int index   = 0;
                    int[,] outTwoDArray = new int[rows, rows];

                    for (int j = 0; j < rows; j++)
                    {
                        for (int k = 0; k < rows; k++)
                        {
                            outTwoDArray[j, k] = 0;
                        }
                    }

                    for (int j = 0; j < rows; j++)
                    {
                        for (int k = 0; k < rows; k++)
                        {
                            counter++;
                            if (index < activeArray.Length && activeArray[index] == counter)
                            {
                                index++;
                                outTwoDArray[j, k] = 1;
                            }
                        }
                    }

                    double[][] comparingArray = new double[rows][];
                    for (int j = 0; j < rows; j++)
                    {
                        comparingArray[j] = new double[rows];
                        for (int k = 0; k < rows; k++)
                        {
                            comparingArray[j][k] = Convert.ToDouble(outTwoDArray[j, k]);
                        }
                    }

                    int[,] record2Darray = null;
                    if (inputSequence[i] == compareIndex)
                    {
                        if (recordOutput != null)
                        {
                            hammingDistance = MathHelpers.GetHammingDistance(recordOutput, comparingArray, false);
                            record2Darray   = new int[recordOutput.Length, recordOutput.Length];
                            for (int j = 0; j < recordOutput.Length; j++)
                            {
                                for (int k = 0; k < recordOutput.Length; k++)
                                {
                                    record2Darray[j, k] = Convert.ToInt32(recordOutput[j][k]);
                                }
                            }
                        }

                        recordOutput = new double[rows][];

                        for (int j = 0; j < rows; j++)
                        {
                            recordOutput[j] = new double[rows];
                            for (int k = 0; k < rows; k++)
                            {
                                recordOutput[j][k] = comparingArray[j][k];
                            }
                        }
                    }

                    if (hammingDistance != null)
                    {
                        int rowHam = Convert.ToInt32(Math.Ceiling(Math.Sqrt(hammingDistance.Length)));
                        int[,] hammingArray = new int[rowHam, rowHam];
                        int limit = 0;

                        for (int j = 0; j < rowHam; j++)
                        {
                            for (int k = 0; k < rowHam; k++)
                            {
                                if (limit < hammingDistance.Length)
                                {
                                    //hj
                                    hammingArray[j, k] = Convert.ToInt32(hammingDistance[limit]);
                                    limit++;
                                }
                            }
                        }

                        int compare_no = 1;
                        if (!File.Exists($"{outFolder}\\Compare_{compareIndex}.png"))
                        {
                            DrawBitmapHamming(hammingArray, 1024, 1024, $"{outFolder}\\Compare_{compareIndex}.png", $"Compare_{compareIndex}");
                            DrawBitmapOverlap(record2Darray, outTwoDArray, 1024, 1024, $"{outFolder}\\Overlap_{compareIndex}.png", $"Overlap_{compareIndex}");
                        }
                        else
                        {
                            while (File.Exists($"{outFolder}\\Compare_{compareIndex}_{compare_no}.png"))
                            {
                                compare_no++;
                            }
                            DrawBitmapHamming(hammingArray, 1024, 1024, $"{outFolder}\\Compare_{compareIndex}_{compare_no}.png", $"Compare_{compareIndex}");
                            compare_no = 1;
                            while (File.Exists($"{outFolder}\\Overlap_{compareIndex}_{compare_no}.png"))
                            {
                                compare_no++;
                            }
                            DrawBitmapOverlap(record2Darray, outTwoDArray, 1024, 1024, $"{outFolder}\\Overlap_{compareIndex}_{compare_no}.png", $"Overlap_{compareIndex}");
                        }
                    }

                    if (!Directory.Exists(outFolder + @"\\" + outFolderCount.ToString()))
                    {
                        Directory.CreateDirectory(outFolder + @"\\" + outFolderCount.ToString());
                    }

                    int[,] out2dimArray = ArrayUtils.Transpose(outTwoDArray);
                    NeoCortexUtils.DrawBitmap(out2dimArray, 1024, 1024, $"{outFolder}\\{outFolderCount}\\{count}.png", Color.Black, Color.Green, text: inputSequence[i].ToString());

                    //File.WriteAllLines(outFolder + count.ToString() + ".txt", new string[] { str });
                    Console.WriteLine("Output is recorded in the path: " + outFolder + count.ToString() + ".txt\n");
                    count++;
                }
            }
        }
        public void NoiseTest()
        {
            const int colDimSize = 64;

            const int noiseStepPercent = 5;

            var parameters = GetDefaultParams();

            parameters.Set(KEY.POTENTIAL_RADIUS, 32 * 32);
            parameters.Set(KEY.POTENTIAL_PCT, 1.0);
            parameters.Set(KEY.GLOBAL_INHIBITION, true);
            parameters.Set(KEY.STIMULUS_THRESHOLD, 0.5);
            parameters.Set(KEY.INHIBITION_RADIUS, (int)0.01 * colDimSize * colDimSize);
            parameters.Set(KEY.LOCAL_AREA_DENSITY, -1);
            parameters.Set(KEY.NUM_ACTIVE_COLUMNS_PER_INH_AREA, 0.02 * colDimSize * colDimSize);
            parameters.Set(KEY.DUTY_CYCLE_PERIOD, 1000);
            parameters.Set(KEY.MAX_BOOST, 0.0);
            parameters.Set(KEY.SYN_PERM_INACTIVE_DEC, 0.008);
            parameters.Set(KEY.SYN_PERM_ACTIVE_INC, 0.01);
            parameters.Set(KEY.MIN_PCT_OVERLAP_DUTY_CYCLES, 0.001);

            parameters.Set(KEY.SEED, 42);

            parameters.setInputDimensions(new int[] { 32, 32 });
            parameters.setColumnDimensions(new int[] { colDimSize, colDimSize });

            var sp  = new SpatialPoolerMT();
            var mem = new Connections();

            //var rnd = new Random();

            parameters.apply(mem);
            sp.init(mem);

            List <int[]> inputVectors = new List <int[]>();

            inputVectors.Add(getInputVector1());
            inputVectors.Add(getInputVector2());

            int vectorIndex = 0;

            int[][] activeArrayWithZeroNoise = new int[inputVectors.Count][];

            foreach (var inputVector in inputVectors)
            {
                var x = getNumBits(inputVector);

                Debug.WriteLine("");
                Debug.WriteLine($"----- VECTOR {vectorIndex} ----------");

                //int[] activeArray = new int[64 * 64];
                activeArrayWithZeroNoise[vectorIndex] = new int[colDimSize * colDimSize];

                int[] activeArray = null;

                for (int j = 0; j < 25; j += noiseStepPercent)
                {
                    Debug.WriteLine($"--- Vector {0} - Noise Iteration {j} ----------");

                    int[] noisedInput;

                    if (j > 0)
                    {
                        noisedInput = ArrayUtils.flipBit(inputVector, (double)((double)j / 100.00));
                    }
                    else
                    {
                        noisedInput = inputVector;
                    }

                    var d = MathHelpers.GetHammingDistance(inputVector, noisedInput, true);
                    Debug.WriteLine($"Input with noise {j} - HamDist: {d}");
                    Debug.WriteLine($"Original: {Helpers.StringifyVector(inputVector)}");
                    Debug.WriteLine($"Noised:   {Helpers.StringifyVector(noisedInput)}");

                    for (int i = 0; i < 10; i++)
                    {
                        //sp.compute( noisedInput, activeArray, true);
                        activeArray = sp.Compute(noisedInput, true, returnActiveColIndiciesOnly: false) as int[];

                        if (j > 0)
                        {
                            Debug.WriteLine($"{ MathHelpers.GetHammingDistance(activeArrayWithZeroNoise[vectorIndex], activeArray, true)} -> {Helpers.StringifyVector(ArrayUtils.IndexWhere(activeArray, (el) => el == 1))}");
                        }
                    }

                    if (j == 0)
                    {
                        Array.Copy(activeArray, activeArrayWithZeroNoise[vectorIndex], activeArrayWithZeroNoise[vectorIndex].Length);
                    }

                    var activeCols = ArrayUtils.IndexWhere(activeArray, (el) => el == 1);

                    var d2 = MathHelpers.GetHammingDistance(activeArrayWithZeroNoise[vectorIndex], activeArray, true);
                    Debug.WriteLine($"Output with noise {j} - Ham Dist: {d2}");
                    Debug.WriteLine($"Original: {Helpers.StringifyVector(ArrayUtils.IndexWhere(activeArrayWithZeroNoise[vectorIndex], (el) => el == 1))}");
                    Debug.WriteLine($"Noised:   {Helpers.StringifyVector(ArrayUtils.IndexWhere(activeArray, (el) => el == 1))}");

                    List <int[, ]> arrays = new List <int[, ]>();

                    int[,] twoDimenArray = ArrayUtils.Make2DArray <int>(activeArray, 64, 64);
                    twoDimenArray        = ArrayUtils.Transpose(twoDimenArray);

                    arrays.Add(ArrayUtils.Transpose(ArrayUtils.Make2DArray <int>(noisedInput, 32, 32)));
                    arrays.Add(ArrayUtils.Transpose(ArrayUtils.Make2DArray <int>(activeArray, 64, 64)));

                    //   NeoCortexUtils.DrawHeatmaps(bostArrays, $"{outputImage}_boost.png", 1024, 1024, 150, 50, 5);
                    NeoCortexUtils.DrawBitmaps(arrays, $"Vector_{vectorIndex}_Noise_{j * 10}.png", Color.Yellow, Color.Gray, OutImgSize, OutImgSize);
                }

                vectorIndex++;
            }

            //
            // Prediction code.
            // This part of code takes a single sample of every input vector and add
            // some noise to it. Then it predicts it.
            // Calculated hamming distance (percent overlap) between predicted output and output
            // trained without noise is final result, which should be higher than 95% (realistic guess).

            vectorIndex = 0;

            foreach (var inputVector in inputVectors)
            {
                double noise       = 7;
                var    noisedInput = ArrayUtils.flipBit(inputVector, noise / 100.00);

                int[] activeArray = new int[64 * 64];

                sp.compute(noisedInput, activeArray, false);

                var dist = MathHelpers.GetHammingDistance(activeArrayWithZeroNoise[vectorIndex], activeArray, true);
                Debug.WriteLine($"Result for vector {vectorIndex++} with noise {noise} - Ham Dist: {dist}");

                Assert.IsTrue(dist >= 95);
            }
        }
Beispiel #6
0
        public void NoiseExperimentTest()
        {
            const int colDimSize = 64;

            const int noiseStepPercent = 5;

            var parameters = GetDefaultParams();

            parameters.Set(KEY.POTENTIAL_RADIUS, 32 * 32);
            parameters.Set(KEY.POTENTIAL_PCT, 1.0);
            parameters.Set(KEY.GLOBAL_INHIBITION, true);
            parameters.Set(KEY.STIMULUS_THRESHOLD, 0.5);
            parameters.Set(KEY.INHIBITION_RADIUS, (int)0.01 * colDimSize * colDimSize);
            parameters.Set(KEY.LOCAL_AREA_DENSITY, -1);
            parameters.Set(KEY.NUM_ACTIVE_COLUMNS_PER_INH_AREA, 0.02 * colDimSize * colDimSize);
            parameters.Set(KEY.DUTY_CYCLE_PERIOD, 1000);
            parameters.Set(KEY.MAX_BOOST, 0.0);
            parameters.Set(KEY.SYN_PERM_INACTIVE_DEC, 0.008);
            parameters.Set(KEY.SYN_PERM_ACTIVE_INC, 0.01);
            parameters.Set(KEY.MIN_PCT_OVERLAP_DUTY_CYCLES, 0.0);

            parameters.Set(KEY.SEED, 42);

            parameters.setInputDimensions(new int[] { 32, 32 });
            parameters.setColumnDimensions(new int[] { colDimSize, colDimSize });

            var sp  = new SpatialPoolerMT();
            var mem = new Connections();

            parameters.apply(mem);
            sp.Init(mem);

            List <int[]> inputVectors = new List <int[]>();

            inputVectors.Add(getInputVector1());
            inputVectors.Add(getInputVector2());

            int vectorIndex = 0;

            int[][] activeColumnsWithZeroNoise = new int[inputVectors.Count][];

            foreach (var inputVector in inputVectors)
            {
                var x = getNumBits(inputVector);

                Debug.WriteLine("");
                Debug.WriteLine($"----- VECTOR {vectorIndex} ----------");

                // Array of active columns with zero noise. The reference (ideal) output.
                activeColumnsWithZeroNoise[vectorIndex] = new int[colDimSize * colDimSize];

                int[] activeArray = null;

                for (int j = 0; j < 25; j += noiseStepPercent)
                {
                    Debug.WriteLine($"--- Vector {0} - Noise Iteration {j} ----------");

                    int[] noisedInput;

                    if (j > 0)
                    {
                        noisedInput = ArrayUtils.FlipBit(inputVector, (double)((double)j / 100.00));
                    }
                    else
                    {
                        noisedInput = inputVector;
                    }

                    // TODO: Try CalcArraySimilarity
                    var d = MathHelpers.GetHammingDistance(inputVector, noisedInput, true);
                    Debug.WriteLine($"Input with noise {j} - HamDist: {d}");
                    Debug.WriteLine($"Original: {Helpers.StringifyVector(inputVector)}");
                    Debug.WriteLine($"Noised:   {Helpers.StringifyVector(noisedInput)}");

                    for (int i = 0; i < 10; i++)
                    {
                        activeArray = sp.Compute(noisedInput, true, returnActiveColIndiciesOnly: false) as int[];

                        if (j > 0)
                        {
                            Debug.WriteLine($"{ MathHelpers.GetHammingDistance(activeColumnsWithZeroNoise[vectorIndex], activeArray, true)} -> {Helpers.StringifyVector(ArrayUtils.IndexWhere(activeArray, (el) => el == 1))}");
                        }
                    }

                    if (j == 0)
                    {
                        Array.Copy(activeArray, activeColumnsWithZeroNoise[vectorIndex], activeColumnsWithZeroNoise[vectorIndex].Length);
                    }

                    var activeCols = ArrayUtils.IndexWhere(activeArray, (el) => el == 1);

                    var d2 = MathHelpers.GetHammingDistance(activeColumnsWithZeroNoise[vectorIndex], activeArray, true);
                    Debug.WriteLine($"Output with noise {j} - Ham Dist: {d2}");
                    Debug.WriteLine($"Original: {Helpers.StringifyVector(ArrayUtils.IndexWhere(activeColumnsWithZeroNoise[vectorIndex], (el) => el == 1))}");
                    Debug.WriteLine($"Noised:   {Helpers.StringifyVector(ArrayUtils.IndexWhere(activeArray, (el) => el == 1))}");

                    List <int[, ]> arrays = new List <int[, ]>();

                    int[,] twoDimenArray = ArrayUtils.Make2DArray <int>(activeArray, 64, 64);
                    twoDimenArray        = ArrayUtils.Transpose(twoDimenArray);

                    arrays.Add(ArrayUtils.Transpose(ArrayUtils.Make2DArray <int>(noisedInput, 32, 32)));
                    arrays.Add(ArrayUtils.Transpose(ArrayUtils.Make2DArray <int>(activeArray, 64, 64)));

                    //   NeoCortexUtils.DrawHeatmaps(bostArrays, $"{outputImage}_boost.png", 1024, 1024, 150, 50, 5);
                    NeoCortexUtils.DrawBitmaps(arrays, $"Vector_{vectorIndex}_Noise_{j * 10}.png", Color.Yellow, Color.Gray, OutImgSize, OutImgSize);
                }

                vectorIndex++;
            }

            vectorIndex = OutputPredictionResult(sp, inputVectors, activeColumnsWithZeroNoise);
        }