Beispiel #1
0
        // GJK-raycast
        // Algorithm by Gino van den Bergen.
        // "Smooth Mesh Contacts with GJK" in Game Physics Pearls. 2010

        /// <summary>
        /// Perform a linear shape cast of shape B moving and shape A fixed. Determines the hit point, normal, and
        /// translation fraction.
        /// </summary>
        /// <returns>true if hit, false if there is no hit or an initial overlap</returns>
        public static bool ShapeCast(ref ShapeCastInput input, out ShapeCastOutput output)
        {
            output            = new ShapeCastOutput();
            output.Iterations = 0;
            output.Lambda     = 1.0f;
            output.Normal     = Vector2.Zero;
            output.Point      = Vector2.Zero;

            DistanceProxy proxyA = input.ProxyA;
            DistanceProxy proxyB = input.ProxyB;

            float radiusA = MathUtils.Max(proxyA.Radius, Settings.PolygonRadius);
            float radiusB = MathUtils.Max(proxyB.Radius, Settings.PolygonRadius);
            float radius  = radiusA + radiusB;

            Transform xfA = input.TransformA;
            Transform xfB = input.TransformB;

            Vector2 r      = input.TranslationB;
            Vector2 n      = new Vector2(0.0f, 0.0f);
            float   lambda = 0.0f;

            // Initial simplex
            Simplex simplex = new Simplex();

            simplex.Count = 0;

            // Get simplex vertices as an array.
            //SimplexVertex vertices = simplex.V.Value0; //Velcro: we don't need this as we have an indexer instead

            // Get support point in -r direction
            int     indexA = proxyA.GetSupport(MathUtils.MulT(xfA.q, -r));
            Vector2 wA     = MathUtils.Mul(ref xfA, proxyA.GetVertex(indexA));
            int     indexB = proxyB.GetSupport(MathUtils.MulT(xfB.q, r));
            Vector2 wB     = MathUtils.Mul(ref xfB, proxyB.GetVertex(indexB));
            Vector2 v      = wA - wB;

            // Sigma is the target distance between polygons
            float sigma     = MathUtils.Max(Settings.PolygonRadius, radius - Settings.PolygonRadius);
            float tolerance = 0.5f * Settings.LinearSlop;

            // Main iteration loop.
            int iter = 0;

            //Velcro: We have moved the max iterations into settings
            while (iter < Settings.MaxGJKIterations && v.Length() - sigma > tolerance)
            {
                Debug.Assert(simplex.Count < 3);

                output.Iterations += 1;

                // Support in direction -v (A - B)
                indexA = proxyA.GetSupport(MathUtils.MulT(xfA.q, -v));
                wA     = MathUtils.Mul(ref xfA, proxyA.GetVertex(indexA));
                indexB = proxyB.GetSupport(MathUtils.MulT(xfB.q, v));
                wB     = MathUtils.Mul(ref xfB, proxyB.GetVertex(indexB));
                Vector2 p = wA - wB;

                // -v is a normal at p
                v.Normalize();

                // Intersect ray with plane
                float vp = MathUtils.Dot(ref v, ref p);
                float vr = MathUtils.Dot(ref v, ref r);
                if (vp - sigma > lambda * vr)
                {
                    if (vr <= 0.0f)
                    {
                        return(false);
                    }

                    lambda = (vp - sigma) / vr;
                    if (lambda > 1.0f)
                    {
                        return(false);
                    }

                    n             = -v;
                    simplex.Count = 0;
                }

                // Reverse simplex since it works with B - A.
                // Shift by lambda * r because we want the closest point to the current clip point.
                // Note that the support point p is not shifted because we want the plane equation
                // to be formed in unshifted space.
                SimplexVertex vertex = simplex.V[simplex.Count];
                vertex.IndexA            = indexB;
                vertex.WA                = wB + lambda * r;
                vertex.IndexB            = indexA;
                vertex.WB                = wA;
                vertex.W                 = vertex.WB - vertex.WA;
                vertex.A                 = 1.0f;
                simplex.V[simplex.Count] = vertex; //Velcro: we have to copy the value back
                simplex.Count           += 1;

                switch (simplex.Count)
                {
                case 1:
                    break;

                case 2:
                    simplex.Solve2();
                    break;

                case 3:
                    simplex.Solve3();
                    break;

                default:
                    Debug.Assert(false);
                    break;
                }

                // If we have 3 points, then the origin is in the corresponding triangle.
                if (simplex.Count == 3)
                {
                    // Overlap
                    return(false);
                }

                // Get search direction.
                v = simplex.GetClosestPoint();

                // Iteration count is equated to the number of support point calls.
                ++iter;
            }

            if (iter == 0)
            {
                // Initial overlap
                return(false);
            }

            // Prepare output.
            simplex.GetWitnessPoints(out _, out Vector2 pointB);

            if (v.LengthSquared() > 0.0f)
            {
                n = -v;
                n.Normalize();
            }

            output.Point      = pointB + radiusA * n;
            output.Normal     = n;
            output.Lambda     = lambda;
            output.Iterations = iter;
            return(true);
        }
Beispiel #2
0
        /// <summary>
        /// Compute the closest points between two shapes. Supports any combination of: CircleShape and
        /// PolygonShape. The simplex cache is input/output. On the first call set SimplexCache.count to
        /// zero.
        /// </summary>
        /// <param name="output"></param>
        /// <param name="cache"></param>
        /// <param name="input"></param>
        public void GetDistance(DistanceOutput output, SimplexCache cache, DistanceInput input)
        {
            GJK_CALLS++;

            DistanceProxy proxyA = input.ProxyA;
            DistanceProxy proxyB = input.ProxyB;

            Transform transformA = input.TransformA;
            Transform transformB = input.TransformB;

            // Initialize the simplex.
            simplex.ReadCache(cache, proxyA, transformA, proxyB, transformB);

            // Get simplex vertices as an array.
            SimplexVertex[] vertices = simplex.Vertices;

            // These store the vertices of the last simplex so that we
            // can check for duplicates and prevent cycling.
            // (pooled above)

            simplex.GetClosestPoint(closestPoint);
            float distanceSqr1 = closestPoint.LengthSquared();

            // Main iteration loop
            int iter = 0;

            while (iter < GJK_MAX_ITERS)
            {
                // Copy simplex so we can identify duplicates.
                int saveCount = simplex.Count;
                for (int i = 0; i < saveCount; i++)
                {
                    saveA[i] = vertices[i].IndexA;
                    saveB[i] = vertices[i].IndexB;
                }

                switch (simplex.Count)
                {
                case 1:
                    break;

                case 2:
                    simplex.Solve2();
                    break;

                case 3:
                    simplex.Solve3();
                    break;

                default:
                    Debug.Assert(false);
                    break;
                }

                // If we have 3 points, then the origin is in the corresponding triangle.
                if (simplex.Count == 3)
                {
                    break;
                }

                // Compute closest point.
                simplex.GetClosestPoint(closestPoint);
                float distanceSqr2 = closestPoint.LengthSquared();

                // ensure progress
                if (distanceSqr2 >= distanceSqr1)
                {
                    // break;
                }
                distanceSqr1 = distanceSqr2;

                // get search direction;
                simplex.GetSearchDirection(d);

                // Ensure the search direction is numerically fit.
                if (d.LengthSquared() < Settings.EPSILON * Settings.EPSILON)
                {
                    // The origin is probably contained by a line segment
                    // or triangle. Thus the shapes are overlapped.

                    // We can't return zero here even though there may be overlap.
                    // In case the simplex is a point, segment, or triangle it is difficult
                    // to determine if the origin is contained in the CSO or very close to it.
                    break;
                }

                /*
                 * SimplexVertex* vertex = vertices + simplex.m_count; vertex.indexA =
                 * proxyA.GetSupport(MulT(transformA.R, -d)); vertex.wA = Mul(transformA,
                 * proxyA.GetVertex(vertex.indexA)); Vec2 wBLocal; vertex.indexB =
                 * proxyB.GetSupport(MulT(transformB.R, d)); vertex.wB = Mul(transformB,
                 * proxyB.GetVertex(vertex.indexB)); vertex.w = vertex.wB - vertex.wA;
                 */

                // Compute a tentative new simplex vertex using support points.
                SimplexVertex vertex = vertices[simplex.Count];

                Rot.MulTransUnsafe(transformA.Q, d.NegateLocal(), temp);
                vertex.IndexA = proxyA.GetSupport(temp);
                Transform.MulToOutUnsafe(transformA, proxyA.GetVertex(vertex.IndexA), vertex.WA);
                // Vec2 wBLocal;
                Rot.MulTransUnsafe(transformB.Q, d.NegateLocal(), temp);
                vertex.IndexB = proxyB.GetSupport(temp);
                Transform.MulToOutUnsafe(transformB, proxyB.GetVertex(vertex.IndexB), vertex.WB);
                vertex.W.Set(vertex.WB).SubLocal(vertex.WA);

                // Iteration count is equated to the number of support point calls.
                ++iter;
                ++GJK_ITERS;

                // Check for duplicate support points. This is the main termination criteria.
                bool duplicate = false;
                for (int i = 0; i < saveCount; ++i)
                {
                    if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i])
                    {
                        duplicate = true;
                        break;
                    }
                }

                // If we found a duplicate support point we must exit to avoid cycling.
                if (duplicate)
                {
                    break;
                }

                // New vertex is ok and needed.
                ++simplex.Count;
            }

            GJK_MAX_ITERS = MathUtils.Max(GJK_MAX_ITERS, iter);

            // Prepare output.
            simplex.GetWitnessPoints(output.PointA, output.PointB);
            output.Distance   = MathUtils.Distance(output.PointA, output.PointB);
            output.Iterations = iter;

            // Cache the simplex.
            simplex.WriteCache(cache);

            // Apply radii if requested.
            if (input.UseRadii)
            {
                float rA = proxyA.Radius;
                float rB = proxyB.Radius;

                if (output.Distance > rA + rB && output.Distance > Settings.EPSILON)
                {
                    // Shapes are still no overlapped.
                    // Move the witness points to the outer surface.
                    output.Distance -= (rA + rB);
                    normal.Set(output.PointB).SubLocal(output.PointA);
                    normal.Normalize();
                    temp.Set(normal).MulLocal(rA);
                    output.PointA.AddLocal(temp);
                    temp.Set(normal).MulLocal(rB);
                    output.PointB.SubLocal(temp);
                }
                else
                {
                    // Shapes are overlapped when radii are considered.
                    // Move the witness points to the middle.
                    // Vec2 p = 0.5f * (output.pointA + output.pointB);
                    output.PointA.AddLocal(output.PointB).MulLocal(.5f);
                    output.PointB.Set(output.PointA);
                    output.Distance = 0.0f;
                }
            }
        }