public void TestSimpleNotFullStaticAverage()
 {
     var sma = new SimpleMovingAverage(5);
     sma.Add(3);
     sma.Add(4);
     sma.Add(2);
     sma.Add(3);
     var average = sma.Average();
     Assert.Equal(3, average);
 }
        public void TestSimpleNotFullStaticAverage()
        {
            var sma = new SimpleMovingAverage(5);

            sma.Add(3);
            sma.Add(4);
            sma.Add(2);
            sma.Add(3);
            var average = sma.Average();

            Assert.Equal(3, average);
        }
        public double CalculateVectorNormalizedAverage(WorkoutSampleVector vector)
        {
            if (!vector.HasData)
            {
                return(0);
            }
            if (vector.NumberOfSamples < 30)
            {
                return(CalculateVectorAverage(vector));
            }

            var    movingAverageBuffer  = new SimpleMovingAverage(30);
            double movingAverage        = 0;
            var    movingAverageSamples = 1;

            movingAverageBuffer.Add(vector.Vector[0].dataPoint);

            for (var i = 1; i < vector.NumberOfSamples; i++)
            {
                if (vector.Vector[i].dataPoint < 0)
                {
                    continue;
                }
                var timeDiff = vector.Vector[i].timeOffsetSeconds - vector.Vector[i - 1].timeOffsetSeconds;
                for (var j = 0; j < timeDiff; j++)
                //Cannot multiply value across time in the sample as we need a 30s moving avg.
                {
                    movingAverageBuffer.Add(vector.Vector[i].dataPoint);
                    if (movingAverageBuffer.NumberOfSamples >= 30)
                    {
                        movingAverage += Math.Pow(Math.Round(movingAverageBuffer.Average()), 4);
                        movingAverageSamples++;
                    }
                }
            }
            var average = movingAverage / movingAverageSamples;

            average = Math.Round(Math.Pow(average, 0.25));
            return(average);
        }
 public void TestSimpleMovingAverage()
 {
     var sma = new SimpleMovingAverage(5);
     sma.Add(10);
     sma.Add(55);
     sma.Add(33);
     sma.Add(56);
     sma.Add (88);
     sma.Add(23);
     var average = sma.Average();
     Assert.Equal(51, average);
 }
        public void TestSimpleMovingAverage()
        {
            var sma = new SimpleMovingAverage(5);

            sma.Add(10);
            sma.Add(55);
            sma.Add(33);
            sma.Add(56);
            sma.Add(88);
            sma.Add(23);
            var average = sma.Average();

            Assert.Equal(51, average);
        }
Beispiel #6
0
        public void Generate(AudioTrack track)
        {
            IAudioStream audioStream = new ResamplingStream(
                new MonoStream(AudioStreamFactory.FromFileInfoIeee32(track.FileInfo)),
                ResamplingQuality.Medium, profile.SamplingRate);

            STFT stft            = new STFT(audioStream, profile.WindowSize, profile.HopSize, WindowType.Hann, STFT.OutputFormat.Decibel);
            int  index           = 0;
            int  indices         = stft.WindowCount;
            int  processedFrames = 0;

            float[] spectrum         = new float[profile.WindowSize / 2];
            float[] smoothedSpectrum = new float[spectrum.Length - profile.SpectrumSmoothingLength + 1]; // the smooved frequency spectrum of the current frame
            var     spectrumSmoother = new SimpleMovingAverage(profile.SpectrumSmoothingLength);

            float[] spectrumTemporalAverage = new float[spectrum.Length]; // a running average of each spectrum bin over time
            float[] spectrumResidual        = new float[spectrum.Length]; // the difference between the current spectrum and the moving average spectrum

            var peakHistory = new PeakHistory(1 + profile.TargetZoneDistance + profile.TargetZoneLength, spectrum.Length / 2);
            var peakPairs   = new List <PeakPair>(profile.PeaksPerFrame * profile.PeakFanout); // keep a single instance of the list to avoid instantiation overhead

            var subFingerprints = new List <SubFingerprint>();

            while (stft.HasNext())
            {
                // Get the FFT spectrum
                stft.ReadFrame(spectrum);

                // Skip frames whose average spectrum volume is below the threshold
                // This skips silent frames (zero samples) that only contain very low noise from the FFT
                // and that would screw up the temporal spectrum average below for the following frames.
                if (spectrum.Average() < spectrumMinThreshold)
                {
                    index++;
                    continue;
                }

                // Smooth the frequency spectrum to remove small peaks
                if (profile.SpectrumSmoothingLength > 0)
                {
                    spectrumSmoother.Clear();
                    for (int i = 0; i < spectrum.Length; i++)
                    {
                        var avg = spectrumSmoother.Add(spectrum[i]);
                        if (i >= profile.SpectrumSmoothingLength)
                        {
                            smoothedSpectrum[i - profile.SpectrumSmoothingLength] = avg;
                        }
                    }
                }

                // Update the temporal moving bin average
                if (processedFrames == 0)
                {
                    // Init averages on first frame
                    for (int i = 0; i < spectrum.Length; i++)
                    {
                        spectrumTemporalAverage[i] = spectrum[i];
                    }
                }
                else
                {
                    // Update averages on all subsequent frames
                    for (int i = 0; i < spectrum.Length; i++)
                    {
                        spectrumTemporalAverage[i] = ExponentialMovingAverage.UpdateMovingAverage(
                            spectrumTemporalAverage[i], profile.SpectrumTemporalSmoothingCoefficient, spectrum[i]);
                    }
                }

                // Calculate the residual
                // The residual is the difference of the current spectrum to the temporal average spectrum. The higher
                // a bin residual is, the steeper the increase in energy in that peak.
                for (int i = 0; i < spectrum.Length; i++)
                {
                    spectrumResidual[i] = spectrum[i] - spectrumTemporalAverage[i] - 90f;
                }

                // Find local peaks in the residual
                // The advantage of finding peaks in the residual instead of the spectrum is that spectrum energy is usually
                // concentrated in the low frequencies, resulting in a clustering of the highest peaks in the lows. Getting
                // peaks from the residual distributes the peaks more evenly across the spectrum.
                var peaks = peakHistory.List;             // take oldest list,
                peaks.Clear();                            // clear it, and
                FindLocalMaxima(spectrumResidual, peaks); // refill with new peaks

                // Pick the largest n peaks
                int numMaxima = Math.Min(peaks.Count, profile.PeaksPerFrame);
                if (numMaxima > 0)
                {
                    peaks.Sort((p1, p2) => p1.Value == p2.Value ? 0 : p1.Value < p2.Value ? 1 : -1); // order peaks by height
                    if (peaks.Count > numMaxima)
                    {
                        peaks.RemoveRange(numMaxima, peaks.Count - numMaxima);                       // select the n tallest peaks by deleting the rest
                    }
                    peaks.Sort((p1, p2) => p1.Index == p2.Index ? 0 : p1.Index < p2.Index ? -1 : 1); // sort peaks by index (not really necessary)
                }

                peakHistory.Add(index, peaks);

                if (FrameProcessed != null)
                {
                    // Mark peaks as 0dB for spectrogram display purposes
                    foreach (var peak in peaks)
                    {
                        spectrum[peak.Index]         = 0;
                        spectrumResidual[peak.Index] = 0;
                    }

                    FrameProcessed(this, new FrameProcessedEventArgs {
                        AudioTrack = track, Index = index, Indices = indices,
                        Spectrum   = spectrum, SpectrumResidual = spectrumResidual
                    });
                }

                processedFrames++;
                index++;

                if (processedFrames >= peakHistory.Length)
                {
                    peakPairs.Clear();
                    FindPairsWithMaxEnergy(peakHistory, peakPairs);
                    ConvertPairsToSubFingerprints(peakPairs, subFingerprints);
                }

                if (subFingerprints.Count > 512)
                {
                    FireFingerprintHashesGenerated(track, indices, subFingerprints);
                    subFingerprints.Clear();
                }
            }

            // Flush the remaining peaks of the last frames from the history to get all remaining pairs
            for (int i = 0; i < profile.TargetZoneLength; i++)
            {
                var peaks = peakHistory.List;
                peaks.Clear();
                peakHistory.Add(-1, peaks);
                peakPairs.Clear();
                FindPairsWithMaxEnergy(peakHistory, peakPairs);
                ConvertPairsToSubFingerprints(peakPairs, subFingerprints);
            }
            FireFingerprintHashesGenerated(track, indices, subFingerprints);

            audioStream.Close();
        }