static void Main(string[] args)
        {
            ShrQATest.shrQAStart(args);

            Console.WriteLine("Vector Addition");
            int N = 50000;

            //Init Cuda context
            ctx = new CudaContext(CudaContext.GetMaxGflopsDeviceId());

            //Load Kernel image from resources
            string resName;

            if (IntPtr.Size == 8)
            {
                resName = "vectorAdd_x64.ptx";
            }
            else
            {
                resName = "vectorAdd.ptx";
            }

            string resNamespace = "vectorAdd";
            string resource     = resNamespace + "." + resName;
            Stream stream       = Assembly.GetExecutingAssembly().GetManifestResourceStream(resource);

            if (stream == null)
            {
                throw new ArgumentException("Kernel not found in resources.");
            }

            CudaKernel vectorAddKernel = ctx.LoadKernelPTX(stream, "VecAdd");

            // Allocate input vectors h_A and h_B in host memory
            h_A = new float[N];
            h_B = new float[N];


            // Initialize input vectors
            RandomInit(h_A, N);
            RandomInit(h_B, N);

            // Allocate vectors in device memory and copy vectors from host memory to device memory
            // Notice the new syntax with implicit conversion operators: Allocation of device memory and data copy is one operation.
            d_A = h_A;
            d_B = h_B;
            d_C = new CudaDeviceVariable <float>(N);

            // Invoke kernel
            int threadsPerBlock = 256;

            vectorAddKernel.BlockDimensions = threadsPerBlock;
            vectorAddKernel.GridDimensions  = (N + threadsPerBlock - 1) / threadsPerBlock;

            vectorAddKernel.Run(d_A.DevicePointer, d_B.DevicePointer, d_C.DevicePointer, N);

            // Copy result from device memory to host memory
            // h_C contains the result in host memory
            h_C = d_C;

            // Verify result
            int i;

            for (i = 0; i < N; ++i)
            {
                float sum = h_A[i] + h_B[i];
                if (Math.Abs(h_C[i] - sum) > 1e-5)
                {
                    break;
                }
            }

            CleanupResources();

            ShrQATest.shrQAFinishExit(args, i == N ? ShrQATest.eQAstatus.QA_PASSED : ShrQATest.eQAstatus.QA_FAILED);
        }
Beispiel #2
0
        static void Main(string[] args)
        {
            int   cuda_device = 0;
            int   nstreams = 4;                           // number of streams for CUDA calls
            int   nreps = 10;                             // number of times each experiment is repeated
            int   n = 16 * 1024 * 1024;                   // number of ints in the data set
            int   nbytes = n * sizeof(int);               // number of data bytes
            dim3  threads, blocks;                        // kernel launch configuration
            float elapsed_time, time_memcpy, time_kernel; // timing variables
            float scale_factor = 1.0f;

            // allocate generic memory and pin it laster instead of using cudaHostAlloc()
            // Untested in C#, so stick to cudaHostAlloc().
            bool       bPinGenericMemory  = false;                   // we want this to be the default behavior
            CUCtxFlags device_sync_method = CUCtxFlags.BlockingSync; // by default we use BlockingSync

            int niterations;                                         // number of iterations for the loop inside the kernel

            ShrQATest.shrQAStart(args);

            Console.WriteLine("[ simpleStreams ]");

            foreach (var item in args)
            {
                if (item.Contains("help"))
                {
                    printHelp();
                    ShrQATest.shrQAFinishExit(args, ShrQATest.eQAstatus.QA_PASSED);
                }
            }

            bPinGenericMemory = false;
            foreach (var item in args)
            {
                if (item.Contains("use_generic_memory"))
                {
                    bPinGenericMemory = true;
                }
            }

            for (int i = 0; i < args.Length; i++)
            {
                if (args[i].Contains("sync_method"))
                {
                    int  temp  = -1;
                    bool error = false;
                    if (i < args.Length - 1)
                    {
                        error = int.TryParse(args[i + 1], out temp);
                        switch (temp)
                        {
                        case 0:
                            device_sync_method = CUCtxFlags.SchedAuto;
                            break;

                        case 1:
                            device_sync_method = CUCtxFlags.SchedSpin;
                            break;

                        case 2:
                            device_sync_method = CUCtxFlags.SchedYield;
                            break;

                        case 4:
                            device_sync_method = CUCtxFlags.BlockingSync;
                            break;

                        default:
                            error = true;
                            break;
                        }
                    }
                    if (!error)
                    {
                        Console.Write("Specifying device_sync_method = {0}, setting reps to 100 to demonstrate steady state\n", sDeviceSyncMethod[(int)device_sync_method]);
                        nreps = 100;
                    }
                    else
                    {
                        Console.Write("Invalid command line option sync_method=\"{0}\"\n", temp);
                        ShrQATest.shrQAFinishExit(args, ShrQATest.eQAstatus.QA_FAILED);
                    }
                }
            }

            int num_devices = CudaContext.GetDeviceCount();

            if (0 == num_devices)
            {
                Console.Write("your system does not have a CUDA capable device, waiving test...\n");
                ShrQATest.shrQAFinishExit(args, ShrQATest.eQAstatus.QA_FAILED);
            }
            cuda_device = CudaContext.GetMaxGflopsDeviceId();

            CudaDeviceProperties deviceProp = CudaContext.GetDeviceInfo(cuda_device);

            if ((1 == deviceProp.ComputeCapability.Major) && (deviceProp.ComputeCapability.Minor < 1))
            {
                Console.Write("{0} does not have Compute Capability 1.1 or newer. Reducing workload.\n", deviceProp.DeviceName);
            }

            if (deviceProp.ComputeCapability.Major >= 2)
            {
                niterations = 100;
            }
            else
            {
                if (deviceProp.ComputeCapability.Minor > 1)
                {
                    niterations = 5;
                }
                else
                {
                    niterations = 1;                     // reduced workload for compute capability 1.0 and 1.1
                }
            }

            // Check if GPU can map host memory (Generic Method), if not then we override bPinGenericMemory to be false
            // In .net we cannot allocate easily generic aligned memory, so <bPinGenericMemory> is always false in our case...
            if (bPinGenericMemory)
            {
                Console.Write("Device: <{0}> canMapHostMemory: {1}\n", deviceProp.DeviceName, deviceProp.CanMapHostMemory ? "Yes" : "No");
                if (deviceProp.CanMapHostMemory == false)
                {
                    Console.Write("Using cudaMallocHost, CUDA device does not support mapping of generic host memory\n");
                    bPinGenericMemory = false;
                }
            }

            // Anything that is less than 32 Cores will have scaled down workload
            scale_factor = Math.Max((32.0f / (ConvertSMVer2Cores(deviceProp.ComputeCapability.Major, deviceProp.ComputeCapability.Minor) * (float)deviceProp.MultiProcessorCount)), 1.0f);
            n            = (int)Math.Round((float)n / scale_factor);

            Console.Write("> CUDA Capable: SM {0}.{1} hardware\n", deviceProp.ComputeCapability.Major, deviceProp.ComputeCapability.Minor);
            Console.Write("> {0} Multiprocessor(s) x {1} (Cores/Multiprocessor) = {2} (Cores)\n",
                          deviceProp.MultiProcessorCount,
                          ConvertSMVer2Cores(deviceProp.ComputeCapability.Major, deviceProp.ComputeCapability.Minor),
                          ConvertSMVer2Cores(deviceProp.ComputeCapability.Major, deviceProp.ComputeCapability.Minor) * deviceProp.MultiProcessorCount);

            Console.Write("> scale_factor = {0:0.0000}\n", 1.0f / scale_factor);
            Console.Write("> array_size   = {0}\n\n", n);

            // enable use of blocking sync, to reduce CPU usage
            Console.Write("> Using CPU/GPU Device Synchronization method ({0})\n", sDeviceSyncMethod[(int)device_sync_method]);

            CudaContext ctx;

            if (bPinGenericMemory)
            {
                ctx = new CudaContext(cuda_device, device_sync_method | CUCtxFlags.MapHost);
            }
            else
            {
                ctx = new CudaContext(cuda_device, device_sync_method);
            }

            //Load Kernel image from resources
            string resName;

            if (IntPtr.Size == 8)
            {
                resName = "simpleStreams_x64.ptx";
            }
            else
            {
                resName = "simpleStreams.ptx";
            }

            string resNamespace = "simpleStreams";
            string resource     = resNamespace + "." + resName;
            Stream stream       = Assembly.GetExecutingAssembly().GetManifestResourceStream(resource);

            if (stream == null)
            {
                throw new ArgumentException("Kernel not found in resources.");
            }

            CudaKernel init_array = ctx.LoadKernelPTX(stream, "init_array");


            // allocate host memory
            int c = 5;                                                          // value to which the array will be initialized

            int[] h_a = null;                                                   // pointer to the array data in host memory
            CudaPageLockedHostMemory <int> hAligned_a = null;                   // pointer to the array data in host memory (aligned to MEMORY_ALIGNMENT)

            //Note: In .net we have two seperated arrays: One is in managed memory (h_a), the other one in unmanaged memory (hAligned_a).
            //In C++ hAligned_a would point somewhere inside the h_a array.
            AllocateHostMemory(bPinGenericMemory, ref h_a, ref hAligned_a, nbytes);

            Console.Write("\nStarting Test\n");

            // allocate device memory
            CudaDeviceVariable <int> d_c = c;            //using new implicit cast to allocate memory and asign value
            CudaDeviceVariable <int> d_a = new CudaDeviceVariable <int>(nbytes / sizeof(int));

            CudaStream[] streams = new CudaStream[nstreams];
            for (int i = 0; i < nstreams; i++)
            {
                streams[i] = new CudaStream();
            }

            // create CUDA event handles
            // use blocking sync
            CudaEvent    start_event, stop_event;
            CUEventFlags eventflags = ((device_sync_method == CUCtxFlags.BlockingSync) ? CUEventFlags.BlockingSync : CUEventFlags.Default);

            start_event = new CudaEvent(eventflags);
            stop_event  = new CudaEvent(eventflags);

            // time memcopy from device
            start_event.Record();                 // record in stream-0, to ensure that all previous CUDA calls have completed
            hAligned_a.AsyncCopyToDevice(d_a, streams[0].Stream);
            stop_event.Record();
            stop_event.Synchronize();               // block until the event is actually recorded
            time_memcpy = CudaEvent.ElapsedTime(start_event, stop_event);
            Console.Write("memcopy:\t{0:0.00}\n", time_memcpy);

            // time kernel
            threads = new dim3(512, 1);
            blocks  = new dim3(n / (int)threads.x, 1);
            start_event.Record();
            init_array.BlockDimensions = threads;
            init_array.GridDimensions  = blocks;
            init_array.RunAsync(streams[0].Stream, d_a.DevicePointer, d_c.DevicePointer, niterations);
            stop_event.Record();
            stop_event.Synchronize();
            time_kernel = CudaEvent.ElapsedTime(start_event, stop_event);
            Console.Write("kernel:\t\t{0:0.00}\n", time_kernel);


            //////////////////////////////////////////////////////////////////////
            // time non-streamed execution for reference
            threads = new dim3(512, 1);
            blocks  = new dim3(n / (int)threads.x, 1);
            start_event.Record();
            for (int k = 0; k < nreps; k++)
            {
                init_array.BlockDimensions = threads;
                init_array.GridDimensions  = blocks;
                init_array.Run(d_a.DevicePointer, d_c.DevicePointer, niterations);
                hAligned_a.SynchronCopyToHost(d_a);
            }
            stop_event.Record();
            stop_event.Synchronize();
            elapsed_time = CudaEvent.ElapsedTime(start_event, stop_event);
            Console.Write("non-streamed:\t{0:0.00} ({1:00} expected)\n", elapsed_time / nreps, time_kernel + time_memcpy);

            //////////////////////////////////////////////////////////////////////
            // time execution with nstreams streams
            threads = new dim3(512, 1);
            blocks  = new dim3(n / (int)(nstreams * threads.x), 1);
            byte[] memset = new byte[nbytes];             // set host memory bits to all 1s, for testing correctness
            for (int i = 0; i < nbytes; i++)
            {
                memset[i] = 255;
            }
            System.Runtime.InteropServices.Marshal.Copy(memset, 0, hAligned_a.PinnedHostPointer, nbytes);
            d_a.Memset(0);             // set device memory to all 0s, for testing correctness

            start_event.Record();
            for (int k = 0; k < nreps; k++)
            {
                init_array.BlockDimensions = threads;
                init_array.GridDimensions  = blocks;
                // asynchronously launch nstreams kernels, each operating on its own portion of data
                for (int i = 0; i < nstreams; i++)
                {
                    init_array.RunAsync(streams[i].Stream, d_a.DevicePointer + i * n / nstreams * sizeof(int), d_c.DevicePointer, niterations);
                }

                // asynchronously launch nstreams memcopies.  Note that memcopy in stream x will only
                //   commence executing when all previous CUDA calls in stream x have completed
                for (int i = 0; i < nstreams; i++)
                {
                    hAligned_a.AsyncCopyFromDevice(d_a, i * n / nstreams * sizeof(int), i * n / nstreams * sizeof(int), nbytes / nstreams, streams[i].Stream);
                }
            }
            stop_event.Record();
            stop_event.Synchronize();
            elapsed_time = CudaEvent.ElapsedTime(start_event, stop_event);
            Console.Write("{0} streams:\t{1:0.00} ({2:0.00} expected with compute capability 1.1 or later)\n", nstreams, elapsed_time / nreps, time_kernel + time_memcpy / nstreams);

            // check whether the output is correct
            Console.Write("-------------------------------\n");
            //We can directly access data in hAligned_a using the [] operator, but copying
            //data first to h_a is faster.
            System.Runtime.InteropServices.Marshal.Copy(hAligned_a.PinnedHostPointer, h_a, 0, nbytes / sizeof(int));

            bool bResults = correct_data(h_a, n, c * nreps * niterations);

            // release resources
            for (int i = 0; i < nstreams; i++)
            {
                streams[i].Dispose();
            }
            start_event.Dispose();
            stop_event.Dispose();

            hAligned_a.Dispose();
            d_a.Dispose();
            d_c.Dispose();
            CudaContext.ProfilerStop();
            ctx.Dispose();

            Console.ReadKey();
            ShrQATest.shrQAFinishExit(args, bResults ? ShrQATest.eQAstatus.QA_PASSED : ShrQATest.eQAstatus.QA_FAILED);
        }
Beispiel #3
0
        static void Main(string[] args)
        {
            const int nx = 2048;
            const int ny = 2048;

            // shifts applied to x and y data
            const int x_shift = 5;
            const int y_shift = 7;

            ShrQATest.shrQAStart(args);

            if ((nx % TILE_DIM != 0) || (ny % TILE_DIM != 0))
            {
                Console.Write("nx and ny must be multiples of TILE_DIM\n");
                ShrQATest.shrQAFinishExit(args, ShrQATest.eQAstatus.QA_WAIVED);
            }

            // execution configuration parameters
            dim3 grid    = new dim3(nx / TILE_DIM, ny / TILE_DIM, 1);
            dim3 threads = new dim3(TILE_DIM, TILE_DIM, 1);

            // This will pick the best possible CUDA capable device
            int devID = findCudaDevice(args);


            //Load Kernel image from resources
            string resName;

            if (IntPtr.Size == 8)
            {
                resName = "simplePitchLinearTexture_x64.ptx";
            }
            else
            {
                resName = "simplePitchLinearTexture.ptx";
            }

            string resNamespace = "simplePitchLinearTexture";
            string resource     = resNamespace + "." + resName;
            Stream stream       = Assembly.GetExecutingAssembly().GetManifestResourceStream(resource);

            if (stream == null)
            {
                throw new ArgumentException("Kernel not found in resources.");
            }
            byte[] kernels = new byte[stream.Length];

            int bytesToRead = (int)stream.Length;

            while (bytesToRead > 0)
            {
                bytesToRead -= stream.Read(kernels, (int)stream.Position, bytesToRead);
            }

            CudaKernel PLKernel    = ctx.LoadKernelPTX(kernels, "shiftPitchLinear");
            CudaKernel ArrayKernel = ctx.LoadKernelPTX(kernels, "shiftArray");

            CudaStopWatch stopwatch = new CudaStopWatch();

            // ----------------------------------
            // Host allocation and initialization
            // ----------------------------------

            float[] h_idata = new float[nx * ny];
            float[] h_odata = new float[nx * ny];
            float[] gold    = new float[nx * ny];

            for (int i = 0; i < nx * ny; ++i)
            {
                h_idata[i] = (float)i;
            }

            // ------------------------
            // Device memory allocation
            // ------------------------

            // Pitch linear input data
            CudaPitchedDeviceVariable <float> d_idataPL = new CudaPitchedDeviceVariable <float>(nx, ny);

            // Array input data
            CudaArray2D d_idataArray = new CudaArray2D(CUArrayFormat.Float, nx, ny, CudaArray2DNumChannels.One);

            // Pitch linear output data
            CudaPitchedDeviceVariable <float> d_odata = new CudaPitchedDeviceVariable <float>(nx, ny);

            // ------------------------
            // copy host data to device
            // ------------------------

            // Pitch linear
            d_idataPL.CopyToDevice(h_idata);

            // Array
            d_idataArray.CopyFromHostToThis <float>(h_idata);

            // ----------------------
            // Bind texture to memory
            // ----------------------

            // Pitch linear
            CudaTextureLinearPitched2D <float> texRefPL = new CudaTextureLinearPitched2D <float>(PLKernel, "texRefPL", CUAddressMode.Wrap, CUFilterMode.Point, CUTexRefSetFlags.NormalizedCoordinates, CUArrayFormat.Float, d_idataPL);
            CudaTextureArray2D texRefArray = new CudaTextureArray2D(ArrayKernel, "texRefArray", CUAddressMode.Wrap, CUFilterMode.Point, CUTexRefSetFlags.NormalizedCoordinates, d_idataArray);

            // ---------------------
            // reference calculation
            // ---------------------

            for (int j = 0; j < ny; j++)
            {
                int jshift = (j + y_shift) % ny;
                for (int i = 0; i < nx; i++)
                {
                    int ishift = (i + x_shift) % nx;
                    gold[j * nx + i] = h_idata[jshift * nx + ishift];
                }
            }

            // ----------------
            // shiftPitchLinear
            // ----------------

            ctx.ClearMemory(d_odata.DevicePointer, 0, d_odata.TotalSizeInBytes);
            PLKernel.BlockDimensions = threads;
            PLKernel.GridDimensions  = grid;
            stopwatch.Start();
            for (int i = 0; i < NUM_REPS; i++)
            {
                PLKernel.Run(d_odata.DevicePointer, (int)(d_odata.Pitch / sizeof(float)), nx, ny, x_shift, y_shift);
            }
            stopwatch.Stop();
            stopwatch.StopEvent.Synchronize();
            float timePL = stopwatch.GetElapsedTime();

            // check results
            d_odata.CopyToHost(h_odata);

            bool res = cutComparef(gold, h_odata);

            bool success = true;

            if (res == false)
            {
                Console.Write("*** shiftPitchLinear failed ***\n");
                success = false;
            }

            // ----------
            // shiftArray
            // ----------

            ctx.ClearMemory(d_odata.DevicePointer, 0, d_odata.TotalSizeInBytes);
            ArrayKernel.BlockDimensions = threads;
            ArrayKernel.GridDimensions  = grid;
            stopwatch.Start();
            for (int i = 0; i < NUM_REPS; i++)
            {
                ArrayKernel.Run(d_odata.DevicePointer, (int)(d_odata.Pitch / sizeof(float)), nx, ny, x_shift, y_shift);
            }

            stopwatch.Stop();
            stopwatch.StopEvent.Synchronize();
            float timeArray = stopwatch.GetElapsedTime();

            // check results
            d_odata.CopyToHost(h_odata);

            res = cutComparef(gold, h_odata);

            if (res == false)
            {
                Console.Write("*** shiftArray failed ***\n");
                success = false;
            }

            float bandwidthPL    = 2.0f * 1000.0f * nx * ny * sizeof(float) / (1e+9f) / (timePL / NUM_REPS);
            float bandwidthArray = 2.0f * 1000.0f * nx * ny * sizeof(float) / (1e+9f) / (timeArray / NUM_REPS);

            Console.Write("\nBandwidth (GB/s) for pitch linear: {0}; for array: {1}\n",
                          bandwidthPL, bandwidthArray);

            float fetchRatePL    = nx * ny / 1e+6f / (timePL / (1000.0f * NUM_REPS));
            float fetchRateArray = nx * ny / 1e+6f / (timeArray / (1000.0f * NUM_REPS));

            Console.Write("\nTexture fetch rate (Mpix/s) for pitch linear: {0}; for array: {1}\n\n",
                          fetchRatePL, fetchRateArray);


            // cleanup
            texRefPL.Dispose();
            texRefArray.Dispose();
            d_idataPL.Dispose();
            d_idataArray.Dispose();
            d_odata.Dispose();
            stopwatch.Dispose();
            ctx.Dispose();

            ShrQATest.shrQAFinishExit(args, (success == true) ? ShrQATest.eQAstatus.QA_PASSED : ShrQATest.eQAstatus.QA_FAILED);
        }